Is Parallel Programming Hard, And, If So, What Can You Do
About It?

First Edition Release Candidate 2

Edited by:

Paul E. McKenney
Linux Technology Center
IBM Beaverton
paulmck @linux.vnet.ibm.com

January 12, 2014

mailto:paulmck@linux.vnet.ibm.com

ii
Legal Statement

This work represents the views of the authors and does not
necessarily represent the view of their employers.

IBM, zSeries, and PowerPC are trademarks or registered
trademarks of International Business Machines Corporation in
the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds.

1386 is a trademark of Intel Corporation or its subsidiaries in
the United States, other countries, or both.

Other company, product, and service names may be trademarks
or service marks of such companies.

The non-source-code text and images in this doc-
ument are provided under the terms of the Creative
Commons Attribution-Share Alike 3.0 United States li-
cense (http://creativecommons.org/licenses/
by-sa/3.0/us/). In brief, you may use the contents of this
document for any purpose, personal, commercial, or otherwise,
so long as attribution to the authors is maintained. Likewise,
the document may be modified, and derivative works and
translations made available, so long as such modifications
and derivations are offered to the public on equal terms as the
non-source-code text and images in the original document.

Source code is covered by various versions of the GPL
(http://www.gnu.org/licenses/gpl-2.0.html).
Some of this code is GPLv2-only, as it derives from
the Linux kernel, while other code is GPLv2-or-later.
See the CodeSamples directory in the git archive
(git://git.kernel.org/pub/scm/linux/
kernel/git/paulmck/perfbook.git) for the
exact licenses, which are included in comment headers in each
file. If you are unsure of the license for a given code fragment,
you should assume GPLv2-only.

Combined work © 2005-2011 by Paul E. McKenney.

http://creativecommons.org/licenses/by-sa/3.0/us/
http://creativecommons.org/licenses/by-sa/3.0/us/
http://www.gnu.org/licenses/gpl-2.0.html
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

Contents

1 Introduction

1.1 Historic Parallel Programming Difficulties, .
1.2 Parallel Programming Goals
1.2.1 Performance
1.2.2 Productivity L e e e e e
1.23 Generality
1.3 Alternatives to Parallel Programming L oL
1.3.1 Multiple Instances of a Sequential Application
1.3.2 Use Existing Parallel Software
1.3.3 Performance Optimization it e
1.4 What Makes Parallel Programming Hard?
1.4.1 Work Partitioning e e e e e e
1.4.2 Parallel AccessControl e
1.4.3 Resource Partitioning and Replication
1.4.4 Interacting With Hardware e
1.4.5 Composite Capabilities e
1.4.6 How Do Languages and Environments Assist With These Tasks?
1.5 GuidetoThisBook
1.5.1 Quick Quizzes e
1.5.2 Sample Source Code L
2 Hardware and its Habits
2.1 OVEIVIEW . . . e e
2.1.1 Pipelined CPUs
2.1.2 Memory References
2.1.3 Atomic Operations ot e e e e e e e e
2.1.4 Memory Barriers e e
2.1.5 Cache MISSes o o e e
2.1.6 O Operations o v v vttt e e e e e e e e e
22 Overheads
2.2.1 Hardware System Architecture
2.2.2 Costs Of Operations v v vt e e e e e e
2.3 Hardware Free Lunch? L
23.1 3DIntegration e e e e
2.3.2 Novel Materials and Processes e
233 Light,NotElectrons e
2.3.4 Special-Purpose Acceleratorso e e e e e e
2.3.5 Existing Parallel Software

iii

O O O OO0 IDDADAANN P W = -

v

CONTENTS

2.4 Software Design Implications e 19
Tools of the Trade 21
3.1 Scripting Languages L. e 21
3.2 POSIX Multiprocessing o it e e e 22
3.2.1 POSIX Process Creation and Destruction 22

3.2.2 POSIX Thread Creation and Destruction 23

323 POSIXLocking o o o e 23

324 POSIX Reader-Writer Locking 25

3.3 Atomic Operations i i i e e e e e e e e 27
3.4 Linux-Kernel Equivalents to POSIX Operations 28
3.5 The Right Tool for the Job: How to Choose? 28
Counting 31
4.1 Why Isn’t Concurrent Counting Trivial? 32
4.2 Statistical Counters e e e e 33
421 Design e 33

422 Array-Based Implementationo 33

423 Eventually Consistent Implementation 34

424 Per-Thread-Variable-Based Implementation 35

425 DisCussion e 37

4.3 Approximate Limit Counterso 37
431 Design 37

4.3.2 Simple Limit Counter Implementation 38

4.3.3 Simple Limit Counter Discussion e 41

4.3.4 Approximate Limit Counter Implementation 42

4.3.5 Approximate Limit Counter Discussion 43

44 ExactLimit Counters it e e e 43
4.4.1 Atomic Limit Counter Implementation 43

4.42 Atomic Limit Counter Discussion 46

4.4.3 Signal-Theft Limit Counter Design 47

4.44 Signal-Theft Limit Counter Implementation 47

4.4.5 Signal-Theft Limit Counter Discussion 50

4.5 Applying Specialized Parallel Counters 51
4.6 Parallel Counting Discussion L L e e e 51
Partitioning and Synchronization Design 55
5.1 Partitioning EXercises Lo e e e e e e 55
5.1.1 Dining Philosophers Problem oo 55

5.1.2 Double-Ended Queue 57

5.1.3 Partitioning Example Discussion L. oL 63

52 Design Criteria o o i e e e 63
5.3 Synchronization Granularity L e 65
5.3.1 Sequential Program 65

532 CodeLocking e e 65

5.33 DataLocking 67

534 DataOwnership e 68

5.3.5 Locking Granularity and Performance 69

54 Parallel Fastpath oL 71

5.4.1 Reader/Writer Locking e 71

CONTENTS

5.4.2 Hierarchical Locking e
5.4.3 Resource Allocator Caches e
5.5 BeyondPartitioning e e
5.5.1 Work-Queue Parallel Maze Solver
5.5.2 Alternative Parallel Maze Solver
5.5.3 Performance Comparison I L
5.5.4 Alternative Sequential Maze Solver
5.5.5 Performance ComparisonIIo oo Lo
5.5.6 Future Directions and Conclusions
5.6 Partitioning, Parallelism, and Optimization i
6 Locking
6.1 Staying ALiVe e e e e e
6.1.1 Deadlock
6.1.2 Livelock and Starvation
6.1.3 Unfairness e e e
6.1.4 Inefficiency L e
6.2 Typesof Locks e e e
6.2.1 Exclusive Locks
6.2.2 Reader-Writer Locks L
6.2.3 Beyond Reader-Writer Locks
6.24 Scoped Locking
6.3 Locking Implementation Issues
6.3.1 Sample Exclusive-Locking Implementation Based on Atomic Exchange
6.3.2 Other Exclusive-Locking Implementations
6.4 Lock-Based Existence Guarant€est i i e e e
6.5 Locking: Heroor Villain? e
6.5.1 Locking For Applications: Hero!
6.5.2 Locking For Parallel Libraries: Just Another Tool
6.5.3 Locking For Parallelizing Sequential Libraries: Villain!
6.6 SUMMATY e e e e
7 Data Ownership
7.1 Multiple Processes L e e
7.2 Partial Data Ownership and pthreads L
7.3 Function Shipping e
7.4 Designated Thread e e e
7.5 Privatizationo e e e
7.6 Other Uses of Data Ownership
8 Deferred Processing
8.1 Reference Counting
8.1.1 Implementation of Reference-Counting Categories
8.1.2 Hazard Pointers e
8.1.3 Linux Primitives Supporting Reference Counting
8.1.4 Counter Optimizations v v v v i it e e e e e e e e e e e e
8.2 Sequence Locks
8.3 Read-Copy Update (RCU) e e e e
8.3.1 Introductionto RCU e
83.2 RCUFundamentals e

72
72
75
76
77
78
80
80
81
81

83
84
84
89
89
90
91
91
91
91
92
94
94
94
96
97
97
97
100
101

103
103
103
104
104
104
104

vi

9 Data Structures

9.1
9.2

9.3

9.4

9.5
9.6

9.7

833 RCUUsage
8.3.4 RCU Linux-Kernel API
8.3.5 “Toy” RCU Implementations
8.3.6 RCUEXercises
What About Updates?
Motivating Application L Lo
Partitionable Data Structures
9.2.1 Hash-TableDesign
9.2.2 Hash-Table Implementation
9.2.3 Hash-Table Performance
Read-Mostly Data Structures
9.3.1 RCU-Protected Hash Table Implementation
9.3.2 RCU-Protected Hash Table Performance
9.3.3 RCU-Protected Hash Table Discussion
Non-Partitionable Data Structures
9.4.1 Resizable Hash Table Design.
9.4.2 Resizable Hash Table Implementation
9.4.3 Resizable Hash Table Discussion
9.4.4 Other Resizable Hash Tables
Other Data Structures
Micro-Optimization o v vt
9.6.1 Specialization
9.6.2 BitsandBytes o
9.6.3 Hardware Considerations
Summary e e e e e e e

10 Validation

10.1

10.2
10.3
10.4
10.5

10.6

10.7

Introduction
10.1.1 Where Do Bugs Come From?
10.1.2 Required Mindset

10.1.4 The Open Source Way
Tracing
ASSErtions
Static Analysis
CodeReview
10.5.1 Inspection
10.5.2 Walkthroughs
10.5.3 Self-Inspection
Probability and Heisenbugs
10.6.1 Statistics for Discrete Testing
10.6.2 Abusing Statistics for Discrete Testing
10.6.3 Statistics for Continuous Testing
10.6.4 Hunting Heisenbugs
Performance Estimation.
10.7.1 Benchmarking,
10.7.2 Profiling
10.7.3 Differential Profiling

CONTENTS

CONTENTS vii

10.7.4 Microbenchmarking 185
10.7.5 Tsolation e e e e e e e e e 186
10.7.6 Detecting Interference 186

10.8 Summary L e e e e 188
11 Formal Verification 191
11.1 What are Promela and Spin? e 191
11.2 Promela Example: Non-Atomic Increment, 191
11.3 Promela Example: Atomic Increment L 193
11.3.1 Combinatorial Explosion e e 195

114 HowtoUsePromela e 195
11.4.1 Promela Peculiarities e 195
11.4.2 Promela Coding Tricks e e e 196

11.5 Promela Example: Locking 197
11.6 Promela Example: QRCU e 198
11.6.1 Running the QRCU Example i 201
11.6.2 How Many Readers and Updaters Are Really Needed? 201
11.6.3 Alternative Approach: Proof of Correctness 201
11.6.4 Alternative Approach: More Capable Tools 202
11.6.5 Alternative Approach: Divideand Conquer 202

11.7 Promela Parable: dynticks and Preemptible RCU 202
11.7.1 Introduction to Preemptible RCU and dynticks 203
11.7.2 Validating Preemptible RCU and dynticks 205
11.7.3 Lessons (Re)Learned e 214

11.8 Simplicity Avoids Formal Verification 214
11.8.1 State Variables for Simplified Dynticks Interface 214
11.8.2 Entering and Leaving Dynticks-IdleMode 215
11.8.3 NMIs From Dynticks-Idle Mode, 215
11.8.4 Interrupts From Dynticks-IdleMode 216
11.8.5 Checking For Dynticks Quiescent States 216
11.8.6 DisCuSSION o o vt e e e e e e 217

11.9 Formal Verification and Memory Ordering e 217
11.9.1 AnatomyofaLitmusTest e 218
11.9.2 What Does This Litmus Test Mean? 218
11.93 RunningaLitmus Test e 219
11.9.4 CPPMEM Discussion i v vt ittt et e e 219
11.10Summary oL e e e e e 220
12 Putting It All Together 221
12.1 Counter Conundrums L e e e e 221
12.1.1 Counting Updates i e e e 221
12.1.2 Counting Lookups e e e 221

122 RCURESCUES o oot s e e e e e e 221
12.2.1 RCU and Per-Thread-Variable-Based Statistical Counters 222
12.2.2 RCU and Counters for Removable I/O Devices 223
12.2.3 ArrayandLength oL 224
12.2.4 Correlated Fields e 224

12.3 Hashing Hassles o e e 225
12.3.1 Correlated Data Elements e 225

12.3.2 Update-Friendly Hash-Table Traversal 225

viii CONTENTS

13 Advanced Synchronization 227
13.1 AvoidingLocks L 227
13.2 Memory Barriers e e e e e e e e e 227

13.2.1 Memory Ordering and Memory Barriers, 227
13.2.2 1If B Follows A, and C Follows B, Why Doesn’t CFollow A? 228
13.2.3 Variables Can Have More ThanOne Value 229
13.24 What Can You Trust? e e 230
13.2.5 Review of Locking Implementations 234
13.2.6 AFew SimpleRules e 234
13.2.7 Abstract Memory Access Model L 234
13.2.8 Device Operations o v v i it e e e e e e e e e e e e 235
13.2.9 Guaranteeso e e e e e e e e e e e 235
13.2.10 What Are Memory Barriers? Lo 236
13.2.11 Locking Constraints v v v vttt e e e e e e e e e e e e 242
13.2.12 Memory-Barrier Examples 243
13.2.13 The Effects of the CPU Cache 245
13.2.14 Where Are Memory Barriers Needed? 246
13.3 Non-Blocking Synchronization 246
13.3.1 Simple NBS e 248
13.3.2 NBSDiscussionot e e e 249

14 Ease of Use 251
14.1 Rusty Scale for APIDesign 251
14.2 Shaving the Mandelbrot Set. 252

15 Conflicting Visions of the Future 255
15.1 The Future of CPU Technology Ain’t Whatit UsedtoBe 255

15.1.1 Uniprocessor Uber Alles i 255
15.1.2 Multithreaded Mania 256
15.1.3 Moreofthe Same 257
15.1.4 Crash Dummies Slamming into the Memory Wall 257
15.2 Transactional MemMOry L e e 258
15.2.1 Outside World e 259
15.2.2 Process Modification e e 261
15.2.3 Synchronization L e 265
1524 DisCUSSION o o i e e e e e e e e e e 268
15.3 Hardware Transactional Memory o0t i e e e 268
15.3.1 HTM Benefits WRT to Locking, 269
15.3.2 HTM Weaknesses WRT Locking 270
15.3.3 HTM Weaknesses WRT to Locking When Augmented 276
15.3.4 Where Does HTM BestFitIn? 276
15.3.5 Potential Game Changers e e 278
153.6 Conclusions L e e 280
15.4 Functional Programming for Parallelism 280

A Important Questions 283

A.1 What Does “After” Mean? e e 283

A2 WhatTime IS It? e e 285

CONTENTS

B.1

B.2

B3

B4

B.5

C.1
C2

C3

C4

C5
C.6

C.7

B Synchronization Primitives
Organization and Initialization L e
B.1.1 smp_init(): e e e e e e e
Thread Creation, Destruction, and Control i
B.2.1 create_thread() e e e
B.2.2 smp_thread_id() e
B.2.3 for_each_thread() e
B.2.4 for_each_running thread()
B.2.5 wait_thread() e e e
B.2.6 wait_all_threads() e e e
B.2.7 ExampleUsage e
Locking e
B.3.1 spin_lock_init()
B.3.22 spin_lock()
B.3.3 spin_trylock() e e e
B.3.4 spin_unlock() L e
B.3.5 ExampleUsage e
Per-Thread Variables e
B.4.1 DEFINE_PER_THREAD() ittt et
B.4.2 DECLARE_PER_THREAD() e
B.4.3 per_thread() e e e
B.4.4 __get thread_var() e
B.45 init_per_thread() e
B.4.6 UsageExample e
Performance L
C Why Memory Barriers?
Cache Structure e e e
Cache-Coherence Protocols e
C2.1 MESIStates o o e
C.2.2 MESIProtocol Messages o v v v v v i e e e e e e e e e e e e e e e
C.2.3 MESI State Diagram o e e e e e
C24 MESIProtocol Example L
Stores Result in Unnecessary Stalls
C3.1 StoreBuffers e
C3.2 Store Forwarding e
C.3.3 Store Buffers and Memory Barriers
Store Sequences Result in Unnecessary Stalls
C4.1 Invalidate QUEUES i i i e e e e e e
C.4.2 Invalidate Queues and Invalidate Acknowledge
C.4.3 Invalidate Queues and Memory Barriers o oL
Read and Write Memory Barriers oL
Example Memory-Barrier Sequences e
C.6.1 Ordering-Hostile Architecture e
C.6.2 Examplel
C.6.3 Example2 e
C.6.4 Example3 e
Memory-Barrier Instructions For Specific CPUs
C.7.1 Alpha e e

C72 AMDO4

iX

X CONTENTS

C.7.3 ARMVT-A/R . . e 308
CT74 TAGA . . . e 308
C.7.5 PA-RISC e 309
C.7.6 POWER /PowerPC. e 309
C.7.7 SPARCRMO,PSO,and TSO e e 310
CT7.8 X80 . . o o e 310
C.7.9 zSeries e e e 311

C.8 Are Memory Barriers Forever? e 311
C.9 Adviceto Hardware Designers e 312
D Read-Copy Update Implementations 313
D.1 Sleepable RCU Implementation ittt e it et e e e 313
D.1.1 SRCU Implementation Strategy o v v v v it e et e e e e e 314
D.1.2 SRCUAPTand Usage i i it e e e e e e e e e e e 314
D.1.3 Implementation e e e e e e e e e e 316
D.1.4 SRCUSUMMArY o vttt et e e e e e e e e e e e e e e e 318

D.2 Hierarchical RCU OVerview i it et e e e e e e e e e 319
D.2.1 Review of RCU Fundamentals 319
D.2.2 Brief Overview of Classic RCU Implementation 319
D.2.3 RCUDesiderata i it e e e e e e e e e e e e 320
D.2.4 Towards a More Scalable RCU Implementation 321
D.2.5 Towards a Greener RCU Implementation 323
D.2.6 State Machine. e e e e e e 323
D27 UseCases v v v vt e e e 324
D.2.8 Testing o i e e e e e e e e e 327
D.2.9 Conclusion e e e e e 330

D.3 Hierarchical RCU Code Walkthrough 330
D.3.1 Data Structures and Kernel Parameters 331
D.3.2 External Interfaces e e e 336
D.3.3 Initialization L e e e e e e e e 341
D.3.4 CPUHotplug o 344
D.3.5 Miscellaneous Functions e 347
D.3.6 Grace-Period-Detection Functions 347
D.3.7 Dyntick-Idle Functions e e 353
D.3.8 Forcing Quiescent Stateso e e e e e e 357
D.3.9 CPU-Stall Detection o v v it ittt e e e e 361
D.3.10 Possible Flaws and Changes e 363

D4 Preemptible RCU 363
D.4.1 Conceptual RCU o 363
D.4.2 Overview of Preemptible RCU Algorithm 364
D.4.3 Validation of Preemptible RCU 373

E Read-Copy Update in Linux 377
E.1 RCUUsage Within Linux e e e e e e 377
E2 RCUEvOIUtion e e e e e e e e e e e 377
E2.1 2627 Linux Kernel e 377
E22 26.28Linux Kernel e 378
E2.3 2629 Linux Kernel e 378
E24 2631 LinuxKernel e 379

E25 2632LinuxKernel e 379

CONTENTS

E2.6 2633 LinuxKernel e e
E27 2634 LinuxKernel
E2.8 2635LinuxKernel e
E29 2636LinuxKernel e e
E2.10 2.6.37 Linux Kernel e e e
E2.11 2638 Linux Kernel e e
E2.12 2639 Linux Kernel e
E2.13 30LinuxKernel e
E2.14 3.1 Linux Kernel e e
E2.15 32 Linux Kernel e e e
E2.16 33 Linux Kernel e e
E2.17 34 Linux Kernel e e
E2.18 35Linux Kernel e
E2.19 36LinuxKernel e
E2.20 3.7 Linux Kernel e e e
E2.21 38 Linux Kernel e e
E2.22 39 Linux Kernel e e
E2.23 3.10Linux Kernel e
E224 311 LinuxKernel e
E225 3.12Linux Kernel e

F Answers to Quick Quizzes

F.1
F2
EF3
F4
F5
F.6
F.7
F.8
F9
F.10
F.11
F.12
F13
F.14
F.15
F.16
F.17
F.18
F.19

Introduction e e
Hardware andits Habits e
Toolsofthe Trade
Counting e e
Partitioning and Synchronization Design L L oL o
Locking e e e e
Data Ownership L e e e
Deferred Processing L e e e e e e e
Data Structures e e
Validation e
Formal Verification o e
Putting It All Together e
Advanced Synchronization L e e
Easeof Use o
Conflicting Visions of the Future
Important QUESHiONS L. e e e e e e e e
Synchronization Primitives Lo

G Glossary

H Credits

H.1
H.2
H.3
H.4
H.5

Authors L
Reviewers
Machine OWNErS o i e e e e e e e e e e e e e e e e e
Original Publications
Figure Credits e e e

X1

379
379
379
380
380
380
380
380
381
381
381
381
382
382
382
382
382
383
383
383

385
385
390
392
397
410
413
420
421
437
439
444
448
450
452
453
455
456
456
459

473

Xii

H.6 Other Support

CONTENTS

Preface

The purpose of this book is to help you understand how
to program shared-memory parallel machines without
risking your sanity.! By describing the algorithms and
designs that have worked well in the past, we hope to
help you avoid at least some of the pitfalls that have beset
parallel projects. But you should think of this book as a
foundation on which to build, rather than as a completed
cathedral. Your mission, if you choose to accept, is to
help make further progress in the exciting field of parallel
programming, progress that should in time render this
book obsolete. Parallel programming is not as hard as it
is reputed, and it is hoped that this book makes it even
easier for you.

This book follows a watershed shift in the parallel-
programming field, from being primarily the domain of
science, research, and grand-challenge projects to being
primarily an engineering discipline. In presenting this
engineering discipline, this book will examine the specific
development tasks peculiar to parallel programming, and
describe how they may be most effectively handled, and,
in some surprisingly common special cases, automated.

This book is written in the hope that presenting the
engineering discipline underlying successful parallel-
programming projects will free a new generation of par-
allel hackers from the need to slowly and painstakingly
reinvent old wheels, instead focusing their energy and
creativity on new frontiers. Although the book is intended
primarily for self-study, it is likely to be more generally
useful. It is hoped that this book will be useful to you, and
that the experience of parallel programming will bring
you as much fun, excitement, and challenge as it has
provided the authors over the years.

! Or, perhaps more accurately, without much greater risk to your
sanity than that incurred by non-parallel programming. Which, come to
think of it, might not be saying all that much. Either way, Appendix A
discusses some important questions whose answers are less intuitive in
parallel programs than in sequential program.

xiii

X1iv

CONTENTS

Chapter 1

Introduction

Parallel programming has earned a reputation as one
of the most difficult areas a hacker can tackle. Papers and
textbooks warn of the perils of deadlock, livelock, race
conditions, non-determinism, Amdahl’s-Law limits to
scaling, and excessive realtime latencies. And these perils
are quite real; we authors have accumulated uncounted
years of experience dealing with them, and all of the
emotional scars, grey hairs, and hair loss that go with
such experiences.

However, new technologies have always been difficult
to use at introduction, but have invariably become easier
over time. For example, there was a time when the ability
to drive a car was a rare skill, but in many developed
countries, this skill is now commonplace. This dramatic
change came about for two basic reasons: (1) cars be-
came cheaper and more readily available, so that more
people had the opportunity to learn to drive, and (2) cars
became easier to operate, due to automatic transmissions,
automatic chokes, automatic starters, greatly improved re-
liability, and a host of other technological improvements.

The same is true of a host of other technologies, in-
cluding computers. It is no longer necessary to operate a
keypunch in order to program. Spreadsheets allow most
non-programmers to get results from their computers that
would have required a team of specialists a few decades
ago. Perhaps the most compelling example is web-surfing
and content creation, which since the early 2000s has
been easily done by untrained, uneducated people using
various now-commonplace social-networking tools. As
recently as 1968, such content creation was a far-out re-
search project [Eng68], described at the time as “like a
UFO landing on the White House lawn”’[Gri00].

Therefore, if you wish to argue that parallel program-
ming will remain as difficult as it is currently perceived
by many to be, it is you who bears the burden of proof,
keeping in mind the many centuries of counter-examples

in a variety of fields of endeavor.

1.1 Historic Parallel Programming
Difficulties

As indicated by its title, this book takes a different ap-
proach. Rather than complain about the difficulty of par-
allel programming, it instead examines the reasons why
parallel programming is difficult, and then works to help
the reader to overcome these difficulties. As will be seen,
these difficulties have fallen into several categories, in-
cluding:

1. The historic high cost and relative rarity of parallel
systems.

2. The typical researcher’s and practitioner’s lack of
experience with parallel systems.

3. The paucity of publicly accessible parallel code.

4. The lack of a widely understood engineering disci-
pline of parallel programming.

5. The high overhead of communication relative to
that of processing, even in tightly coupled shared-
memory computers.

Many of these historic difficulties are well on the way to
being overcome. First, over the past few decades, the cost
of parallel systems has decreased from many multiples of
that of a house to a fraction of that of a bicycle, thanks to
the advent of multicore systems. Papers calling out the
advantages of multicore CPUs were published as early
as 1996 [ONH196], IBM introduced simultaneous multi-
threading into its high-end POWER family in 2000, and
multicore in 2001. Intel introduced hyperthreading into

its commodity Pentium line in November 2000, and both
AMD and Intel introduced dual-core CPUs in 2005. Sun
followed with the multicore/multi-threaded Niagara in
late 2005. In fact, by 2008, it was becoming difficult to
find a single-CPU desktop system, with single-core CPUs
being relegated to netbooks and embedded devices. By
2012, even smartphones were starting to sport multiple
CPUs.

Second, the advent of low-cost and readily available
multicore system means that the once-rare experience
of parallel programming is now available to almost all
researchers and practitioners. In fact, parallel systems are
now well within the budget of students and hobbyists. We
can therefore expect greatly increased levels of invention
and innovation surrounding parallel systems, and that
increased familiarity will over time make once-forbidding
field of parallel programming much more friendly and
commonplace.

Third, in the 20™ century, large systems of highly par-
allel software were almost always closely guarded propri-
etary secrets. In happy contrast, the 21% century has seen
numerous open-source (and thus publicly available) paral-
lel software projects, including the Linux kernel [Tor03c],
database systems [Pos08, MS08], and message-passing
systems [The08, UoCO08]. This book will draw primarily
from the Linux kernel, but will provide much material
suitable for user-level applications.

Fourth, even though the large-scale parallel-
programming projects of the 1980s and 1990s were
almost all proprietary projects, these projects have
seeded the community with a cadre of developers who
understand the engineering discipline required to develop
production-quality parallel code. A major purpose of this
book is to present this engineering discipline.

Unfortunately, the fifth difficulty, the high cost of com-
munication relative to that of processing, remains largely
in force. Although this difficulty has been receiving in-
creasing attention during the new millennium, according
to Stephen Hawking, the finite speed of light and the
atomic nature of matter is likely to limit progress in this
area [Gar(07, Moo03]. Fortunately, this difficulty has been
in force since the late 1980s, so that the aforementioned
engineering discipline has evolved practical and effective
strategies for handling it. In addition, hardware designers
are increasingly aware of these issues, so perhaps future
hardware will be more friendly to parallel software as
discussed in Section 2.3.

Quick Quiz 1.1: Come on now!!! Parallel program-
ming has been known to be exceedingly hard for many

CHAPTER 1. INTRODUCTION

decades. You seem to be hinting that it is not so hard.
What sort of game are you playing? l

However, even though parallel programming might not
be as hard as is commonly advertised, it is often more
work than is sequential programming.

Quick Quiz 1.2: How could parallel programming
ever be as easy as sequential programming? ll

It therefore makes sense to consider alternatives to
parallel programming. However, it is not possible to
reasonably consider parallel-programming alternatives
without understanding parallel-programming goals. This
topic is addressed in the next section.

1.2 Parallel Programming Goals

The three major goals of parallel programming (over and
above those of sequential programming) are as follows:

1. Performance.
2. Productivity.

3. Generality.

Quick Quiz 1.3: Oh, really??? What about correct-
ness, maintainability, robustness, and so on? H

Quick Quiz 1.4: And if correctness, maintainability,
and robustness don’t make the list, why do productivity
and generality? H

Quick Quiz 1.5: Given that parallel programs are
much harder to prove correct than are sequential pro-
grams, again, shouldn’t correctness really be on the list?
|

Quick Quiz 1.6: What about just having fun? B

Each of these goals is elaborated upon in the following
sections.

1.2.1 Performance

Performance is the primary goal behind most parallel-
programming effort. After all, if performance is not a
concern, why not do yourself a favor, just write sequential
code, and be happy? It will very likely be easier, and you
will probably get done much more quickly.

Quick Quiz 1.7: Are there no cases where parallel
programming is about something other than performance?
]

Note that “performance” is interpreted quite broadly
here, including scalability (performance per CPU) and
efficiency (for example, performance per watt).

1.2. PARALLEL PROGRAMMING GOALS

10000 =TT 71 T T 1
%)
P | i
S 1000 =
< i]
8 - -]
o 100 | s‘g =
o B + T
I -
~ 10 =g =
8 | ++ -
) i #+ +]
) 1 + —
o | _
& +
oq L— 1 1 1141]
Yo} o Yo o Te} o Te} o Yo}
N~ o] [e0] (o2} (e)] o o ~— ~—
(o)} (o)} (o] (o] ()] o o o o
— — ~— -~ — A Al A A
Year

Figure 1.1: MIPS/Clock-Frequency Trend for Intel CPUs

That said, the focus of performance has shifted from
hardware to parallel software. This change in focus is due
to the fact that although Moore’s Law continues to deliver
increases in transistor density, it has ceased to provide the
traditional single-threaded performance increases, as can
be seen in Figure 1.1.! This means that writing single-
threaded code and simply waiting a year or two for the
CPUs to catch up may no longer be an option. Given
the recent trends on the part of all major manufacturers
towards multicore/multithreaded systems, parallelism is
the way to go for those wanting the avail themselves of
the full performance of their systems.

Even so, the first goal is performance rather than scal-
ability, especially given that the easiest way to attain
linear scalability is to reduce the performance of each
CPU [Tor01]. Given a four-CPU system, which would
you prefer? A program that provides 100 transactions
per second on a single CPU, but does not scale at all?
Or a program that provides 10 transactions per second
on a single CPU, but scales perfectly? The first program
seems like a better bet, though the answer might change
if you happened to be one of the lucky few with access to
a 32-CPU system.

! This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.

That said, just because you have multiple CPUs is not
necessarily in and of itself a reason to use them all, espe-
cially given the recent decreases in price of multi-CPU
systems. The key point to understand is that parallel pro-
gramming is primarily a performance optimization, and,
as such, it is one potential optimization of many. If your
program is fast enough as currently written, there is no rea-
son to optimize, either by parallelizing it or by applying
any of a number of potential sequential optimizations.?
By the same token, if you are looking to apply parallelism
as an optimization to a sequential program, then you will
need to compare parallel algorithms to the best sequential
algorithms. This may require some care, as far too many
publications ignore the sequential case when analyzing
the performance of parallel algorithms.

1.2.2 Productivity

Quick Quiz 1.8: Why all this prattling on about non-
technical issues??? And not just any non-technical issue,
but productivity of all things? Who cares? ll

Productivity has been becoming increasingly important
through the decades. To see this, consider that early com-
puters cost millions of dollars at a time when engineering
salaries were a few thousand dollars a year. If dedicating
a team of ten engineers to such a machine would improve
its performance by 10%, their salaries would be repaid
many times over.

One such machine was the CSIRAC, the oldest still-
intact stored-program computer, put in operation in
1949 [Mus04, Mel06]. Given that the machine had but
768 words of RAM, it is safe to say that the productivity
issues that arise in large-scale software projects were not
an issue for this machine. Because this machine was built
before the transistor era, it was constructed of 2,000 vac-
uum tubes, ran with a clock frequency of 1kHz, consumed
30kW of power, and weighed more than three metric tons.

It would be difficult to purchase a machine with this lit-
tle compute power roughly sixty years later (2008), with
the closest equivalents being 8-bit embedded micropro-
cessors exemplified by the venerable Z80 [Wik08]. This
CPU had 8,500 transistors, and can still be purchased in
2008 for less than $2 US per unit in 1,000-unit quantities.
In stark contrast to the CSIRAC, software-development
costs are anything but insignificant for the Z80.

The CSIRAC and the Z80 are two points in a long-term

2 Of course, if you are a hobbyist whose primary interest is writing
parallel software, that is more than enough reason to parallelize whatever
software you are interested in.

4
100000 F——T— T T T T T 3
[&]
10000 E +_$_ =
o 1000 F g .
@ i ;
8 100 | e .
o i . ;
o L :t+-i-'-+ _
= 10 Ly 3
[+ 4T]
1F -
[+]

01 R R R S N B
Yo} o To) o Te} o Yo} o Te]
N~ [0} [0} (2] (e} o o — —
» » o o » o o o o
— — — -~ — Al Al A Al

Year

Figure 1.2: MIPS per Die for Intel CPUs

trend, as can be seen in Figure 1.2. This figure plots an
approximation to computational power per die over the
past three decades, showing a consistent four-order-of-
magnitude increase. Note that the advent of multicore
CPUs has permitted this increase to continue unabated
despite the clock-frequency wall encountered in 2003.

One of the inescapable consequences of the rapid de-
crease in the cost of hardware is that software productivity
grows increasingly important. It is no longer sufficient
merely to make efficient use of the hardware, it is now
also necessary to make extremely efficient use of software
developers. This has long been the case for sequential
hardware, but only recently has parallel hardware become
a low-cost commodity. Therefore, the need for high pro-
ductivity in creating parallel software has only recently
become hugely important.

Quick Quiz 1.9: Given how cheap parallel hardware
has become, how can anyone afford to pay people to
program it? l

Perhaps at one time, the sole purpose of parallel soft-
ware was performance. Now, however, productivity is
increasingly important.

1.2.3 Generality

One way to justify the high cost of developing parallel
software is to strive for maximal generality. All else being
equal, the cost of a more-general software artifact can be
spread over more users than can a less-general artifact.

CHAPTER 1. INTRODUCTION

Unfortunately, generality often comes at the cost of per-
formance, productivity, or both. To see this, consider the
following popular parallel programming environments:

C/C++ “Locking Plus Threads” : This category,
which includes POSIX Threads (pthreads) [Ope97],
Windows Threads, and numerous operating-system
kernel environments, offers excellent performance
(at least within the confines of a single SMP system)
and also offers good generality. Pity about the
relatively low productivity.

Java : This programming environment, which is inher-
ently multithreaded, is widely believed to be much
more productive than C or C++, courtesy of the au-
tomatic garbage collector and the rich set of class
libraries, and is reasonably general purpose. How-
ever, its performance, though greatly improved in
the early 2000s, is generally considered to be less
than that of C and C++.

MPI : This Message Passing Interface [MPIO8] powers
the largest scientific and technical computing clus-
ters in the world, so offers unparalleled performance
and scalability. It is in theory general purpose, but
has generally been used for scientific and techni-
cal computing. Its productivity is believed by many
to be even lower than that of C/C++ “locking plus
threads” environments.

OpenMP : This set of compiler directives can be used to
parallelize loops. It is thus quite specific to this task,
and this specificity often limits its performance. It
is, however, much easier to use than MPI or C/C++
“locking plus threads.”

SQL : Structured Query Language [Int92] is extremely
specific, applying only to relational database queries.
However, its performance is quite good, doing quite
well in Transaction Processing Performance Council
(TPC) benchmarks [Tra01]. Productivity is excel-
lent, in fact, this parallel programming environment
enables parallel-programming novices to make good
use of a large parallel system.

The nirvana of parallel programming environments,
one that offers world-class performance, productivity, and
generality, simply does not yet exist. Until such a nir-
vana appears, it will be necessary to make engineering
tradeoffs among performance, productivity, and gener-
ality. One such tradeoff is shown in Figure 1.3, which

1.3. ALTERNATIVES TO PARALLEL PROGRAMMING

Productivity

Performance
Alelsusn

Figure 1.3: Software Layers and Performance, Productiv-
ity, and Generality

shows how productivity becomes increasingly important
at the upper layers of the system stack, while performance
and generality become increasingly important at the lower
layers of the system stack. The huge development costs
incurred near the bottom of the stack must be spread over
equally huge numbers of users on the one hand (hence
the importance of generality), and performance lost near
the bottom of the stack cannot easily be recovered further
up the stack. Near the top of the stack, there might be
very few users for a given specific application, in which
case productivity concerns are paramount. This explains
the tendency towards “bloatware” further up the stack:
extra hardware is often cheaper than the extra developers.
This book is intended for developers working near the
bottom of the stack, where performance and generality
are of great concern.

It is important to note that a tradeoff between produc-
tivity and generality has existed for centuries in many
fields. For but one example, a nailgun is far more pro-
ductive than is a hammer, but in contrast to the nailgun,
a hammer can be used for many things besides driving
nails. It should therefore be absolutely no surprise to see
similar tradeoffs appear in the field of parallel comput-
ing. This tradeoff is shown schematically in Figure 1.4.
Here, users 1, 2, 3, and 4 have specific jobs that they need
the computer to help them with. The most productive
possible language or environment for a given user is one
that simply does that user’s job, without requiring any
programming, configuration, or other setup.

Quick Quiz 1.10: This is a ridiculously unachievable
ideal! Why not focus on something that is achievable in

Special-Purpose
~<—Env Productive
for User 1

\

User 2

m

Special-Purpose Environment
Productive for User 3

Spemal Purpose
Environment
Productlve for User 2

m

Special-Purpose
Environment
Productive for User 4

General- Purpose
Environment

Figure 1.4: Tradeoff Between Productivity and Generality

practice? l

Unfortunately, a system that does the job required by
user 1 is unlikely to do user 2’s job. In other words, the
most productive languages and environments are domain-
specific, and thus by definition lacking generality.

Another option is to tailor a given programming lan-
guage or environment to the hardware system (for ex-
ample, low-level languages such as assembly, C, C++, or
Java) or to some abstraction (for example, Haskell, Prolog,
or Snobol), as is shown by the circular region near the cen-
ter of Figure 1.4. These languages can be considered to be
general in the sense that they are equally ill-suited to the
jobs required by users 1, 2, 3, and 4. In other words, their
generality is purchased at the expense of decreased pro-
ductivity when compared to domain-specific languages
and environments. Worse yet, a language that is tailored
to a given abstraction is also likely to suffer from perfor-
mance and scalability problems unless and until someone
figures out how to efficiently map that abstraction to real
hardware.

With the three often-conflicting parallel-programming
goals of performance, productivity, and generality in
mind, it is now time to look into avoiding these conflicts
by considering alternatives to parallel programming.

1.3 Alternatives to Parallel Pro-
gramming

In order to properly consider alternatives to parallel pro-
gramming, you must first have thought through what you

expect the parallelism to do for you. As seen in Sec-
tion 1.2, the primary goals of parallel programming are
performance, productivity, and generality. Because this
book is intended for developers working on performance-
critical code near the bottom of the software stack, the re-
mainder of this section focuses primarily on performance
improvement.

It is important to keep in mind that parallelism is but
one way to improve performance. Other well-known
approaches include the following, in roughly increasing
order of difficulty:

1. Run multiple instances of a sequential application.
2. Make the application use existing parallel software.

3. Apply performance optimization to the serial appli-
cation.

These approaches are covered in the sections.

1.3.1 Multiple Instances of a Sequential
Application

Running multiple instances of a sequential application can
allow you to do parallel programming without actually
doing parallel programming. There are a large number of
ways to approach this, depending on the structure of the
application.

If your program is analyzing a large number of different
scenarios, or is analyzing a large number of independent
data sets, one easy and effective approach is to create a
single sequential program that carries out a single analysis,
then use any of a number of scripting environments (for
example the bash shell) to run a number of instances of
this sequential program in parallel. In some cases, this
approach can be easily extended to a cluster of machines.

This approach may seem like cheating, and in fact
some denigrate such programs as “embarrassingly paral-
lel”. And in fact, this approach does have some potential
disadvantages, including increased memory consumption,
waste of CPU cycles recomputing common intermediate
results, and increased copying of data. However, it is of-
ten extremely productive, garnering extreme performance
gains with little or no added effort.

1.3.2 Use Existing Parallel Software

There is no longer any shortage of parallel software envi-
ronments that can present a single-threaded programming

CHAPTER 1. INTRODUCTION

environment, including relational databases [Dat82], web-
application servers, and map-reduce environments. For
example, a common design provides a separate program
for each user, each of which generates SQL that is run
concurrently against a common relational database. The
per-user programs are responsible only for the user inter-
face, with the relational database taking full responsibility
for the difficult issues surrounding parallelism and persis-
tence.

Taking this approach often sacrifices some perfor-
mance, at least when compared to carefully hand-coding
a fully parallel application. However, such sacrifice is
often justified given the huge reduction in development
effort required.

1.3.3 Performance Optimization

Up through the early 2000s, CPU performance was dou-
bling every 18 months. In such an environment, it is often
much more important to create new functionality than to
do careful performance optimization. Now that Moore’s
Law is “only” increasing transistor density instead of
increasing both transistor density and per-transistor per-
formance, it might be a good time to rethink the impor-
tance of performance optimization. After all, performance
optimization can reduce power consumption as well as
increasing performance.

From this viewpoint, parallel programming is but an-
other performance optimization, albeit one that is be-
coming much more attractive as parallel systems become
cheaper and more readily available. However, it is wise
to keep in mind that the speedup available from paral-
lelism is limited to roughly the number of CPUs, while
the speedup potentially available from straight software
optimization can be multiple orders of magnitude.

Furthermore, different programs might have different
performance bottlenecks. Parallel programming will only
help with some bottlenecks. For example, if your program
spends most of its time waiting on data from your disk
drive, using multiple CPUs is not likely to gain much per-
formance. In fact, if the program was reading from a large
file laid out sequentially on a rotating disk, parallelizing
your program might well make it a lot slower. You should
instead add more disk drives, optimize the data so that
the file can be smaller (thus faster to read), or, if possible,
avoid the need to read quite so much of the data.

Quick Quiz 1.11: What other bottlenecks might pre-
vent additional CPUs from providing additional perfor-
mance?

1.4. WHAT MAKES PARALLEL PROGRAMMING HARD? 7

Parallelism can be a powerful optimization technique,
but it is not the only such technique, nor is it appropriate
for all situations. Of course, the easier it is to parallelize
your program, the more attractive parallelization becomes
as an optimization. Parallelization has a reputation of
being quite difficult, which leads to the question “exactly
what makes parallel programming so difficult?”

1.4 What Makes Parallel Program-
ming Hard?

It is important to note that the difficulty of parallel pro-
gramming is as much a human-factors issue as it is a set of
technical properties of the parallel programming problem.
This is the case because we need human beings to be able
to tell parallel systems what to do, and this two-way com-
munication between human and computer is as much a
function of the human as it is of the computer. Therefore,
appeals to abstractions or to mathematical analyses will
necessarily be of severely limited utility.

In the Industrial Revolution, the interface between hu-
man and machine was evaluated by human-factor studies,
then called time-and-motion studies. Although there have
been a few human-factor studies examining parallel pro-
gramming [ENS05, ES05, HCS™05, SS94], these studies
have been extremely narrowly focused, and hence unable
to demonstrate any general results. Furthermore, given
that the normal range of programmer productivity spans
more than an order of magnitude, it is unrealistic to expect
an affordable study to be capable of detecting (say) a 10%
difference in productivity. Although the multiple-order-
of-magnitude differences that such studies can reliably
detect are extremely valuable, the most impressive im-
provements tend to be based on a long series of 10%
improvements.

We must therefore take a different approach.

One such approach is to carefully consider the tasks
that parallel programmers must undertake that are not
required of sequential programmers. We can then evaluate
how well a given programming language or environment
assists the developer with these tasks. These tasks fall into
the four categories shown in Figure 1.5, each of which is
covered in the following sections.

1.4.1 Work Partitioning

Work partitioning is absolutely required for parallel exe-
cution: if there is but one “glob” of work, then it can be

P
Performance

N
Productivity

Work

Y Partitioning Y

A Resource
Parallel Partitioning and
Access Control Y Replication
A : A
Interacting
With Hardware

Generality

Figure 1.5: Categories of Tasks Required of Parallel Pro-
grammers

executed by at most one CPU at a time, which is by defini-
tion sequential execution. However, partitioning the code
requires great care. For example, uneven partitioning can
result in sequential execution once the small partitions
have completed [Amd67]. In less extreme cases, load
balancing can be used to fully utilize available hardware,
thus improving performance and scalabilty.

In addition, partitioning of work can complicate han-
dling of global errors and events: a parallel program may
need to carry out non-trivial synchronization in order to
safely process such global events.

Each partition requires some sort of communication:
after all, if a given thread did not communicate at all,
it would have no effect and would thus not need to be
executed. However, because communication incurs over-
head, careless partitioning choices can result in severe
performance degradation.

Furthermore, the number of concurrent threads must
often be controlled, as each such thread occupies common
resources, for example, space in CPU caches. If too many
threads are permitted to execute concurrently, the CPU
caches will overflow, resulting in high cache miss rate,
which in turn degrades performance. On the other hand,
large numbers of threads are often required to overlap
computation and I/O.

Quick Quiz 1.12: What besides CPU cache capacity
might require limiting the number of concurrent threads?
]

Finally, permitting threads to execute concurrently
greatly increases the program’s state space, which can
make the program difficult to understand, degrading pro-
ductivity. All else being equal, smaller state spaces having
more regular structure are more easily understood, but

this is a human-factors statement as much as it is a tech-
nical or mathematical statement. Good parallel designs
might have extremely large state spaces, but neverthe-
less be easy to understand due to their regular structure,
while poor designs can be impenetrable despite having a
comparatively small state space. The best designs exploit
embarrassing parallelism, or transform the problem to
one having an embarrassingly parallel solution. In either
case, “embarrassingly parallel” is in fact an embarrass-
ment of riches. The current state of the art enumerates
good designs; more work is required to make more gen-
eral judgments on state-space size and structure.

1.4.2 Parallel Access Control

Given a sequential program with only a single thread,
that single thread has full access to all of the program’s
resources. These resources are most often in-memory data
structures, but can be CPUs, memory (including caches),
I/O devices, computational accelerators, files, and much
else besides.

The first parallel-access-control issue is whether the
form of the access to a given resource depends on that re-
source’s location. For example, in many message-passing
environments, local-variable access is via expressions and
assignments, while remote-variable access uses an en-
tirely different syntax, usually involving messaging. The
POSIX Threads environment [Ope97], Structured Query
Language (SQL) [Int92], and partitioned global address-
space (PGAS) environments such as Universal Parallel C
(UPC) [EGCDO03] offer implicit access, while Message
Passing Interface (MPI) [MPI08] offers explicit access
because access to remote data requires explicit messaging.

The other parallel-access-control issue is how threads
coordinate access to the resources. This coordination is
carried out by the very large number of synchronization
mechanisms provided by various parallel languages and
environments, including message passing, locking, trans-
actions, reference counting, explicit timing, shared atomic
variables, and data ownership. Many traditional parallel-
programming concerns such as deadlock, livelock, and
transaction rollback stem from this coordination. This
framework can be elaborated to include comparisons of
these synchronization mechanisms, for example locking
vs. transactional memory [MMWO07], but such elabora-
tion is beyond the scope of this section.

CHAPTER 1. INTRODUCTION

1.4.3 Resource Partitioning and Replica-
tion

The most effective parallel algorithms and systems exploit
resource parallelism, so much so that it is usually wise to
begin parallelization by partitioning your write-intensive
resources and replicating frequently accessed read-mostly
resources. The resource in question is most frequently
data, which might be partitioned over computer systems,
mass-storage devices, NUMA nodes, CPU cores (or dies
or hardware threads), pages, cache lines, instances of syn-
chronization primitives, or critical sections of code. For
example, partitioning over locking primitives is termed
“data locking” [BK85].

Resource partitioning is frequently application depen-
dent, for example, numerical applications frequently par-
tition matrices by row, column, or sub-matrix, while com-
mercial applications frequently partition write-intensive
data structures and replicate read-mostly data structures.
For example, a commercial application might assign the
data for a given customer to a given few computer sys-
tems out of a large cluster. An application might statically
partition data, or dynamically change the partitioning over
time.

Resource partitioning is extremely effective, but it can
be quite challenging for complex multilinked data struc-
tures.

1.4.4 Interacting With Hardware

Hardware interaction is normally the domain of the op-
erating system, the compiler, libraries, or other software-
environment infrastructure. However, developers working
with novel hardware features and components will often
need to work directly with such hardware. In addition,
direct access to the hardware can be required when squeez-
ing the last drop of performance out of a given system. In
this case, the developer may need to tailor or configure
the application to the cache geometry, system topology,
or interconnect protocol of the target hardware.

In some cases, hardware may be considered to be a
resource which may be subject to partitioning or access
control, as described in the previous sections.

1.4.5 Composite Capabilities

Although these four capabilities are fundamental, good
engineering practice uses composites of these capabilities.
For example, the data-parallel approach first partitions
the data so as to minimize the need for inter-partition

1.5. GUIDE TO THIS BOOK

4 N\
Performance Productivity

Y L /
A Resource
Parallel J«— Partitioning and
Access Control | (_Replication

) A

Interacting
With Hardware

Work
Partitioning

Generality

Figure 1.6: Ordering of Parallel-Programming Tasks

communication, partitions the code accordingly, and fi-
nally maps data partitions and threads so as to maximize
throughput while minimizing inter-thread communication,
as shown in Figure 1.6. The developer can then consider
each partition separately, greatly reducing the size of the
relevant state space, in turn increasing productivity. Of
course, some problems are non-partitionable but on the
other hand, clever transformations into forms permitting
partitioning can greatly enhance both performance and
scalability [Met99].

14.6 How Do Languages and Environ-
ments Assist With These Tasks?

Although many environments require that the developer
deal manually with these tasks, there are long-standing
environments that bring significant automation to bear.
The poster child for these environments is SQL, many
implementations of which automatically parallelize single
large queries and also automate concurrent execution of
independent queries and updates.

These four categories of tasks must be carried out in all
parallel programs, but that of course does not necessarily
mean that the developer must manually carry out these
tasks. We can expect to see ever-increasing automation of
these four tasks as parallel systems continue to become
cheaper and more readily available.

Quick Quiz 1.13: Are there any other obstacles to
parallel programming? W

1.5 Guide to This Book

This book is not a collection of optimal algorithms with
tiny areas of applicability; instead, it is a handbook of
widely applicable and heavily used techniques. We of
course could not resist the urge to include some of our
favorites that have not (yet!) passed the test of time (what
author could?), but we have nonetheless gritted our teeth
and banished our darlings to appendices. Perhaps in time,
some of them will see enough use that we can promote
them into the main body of the text.

1.5.1 Quick Quizzes

“Quick quizzes” appear throughout this book. Some of
these quizzes are based on material in which that quick
quiz appears, but others require you to think beyond that
section, and, in some cases, beyond the entire book. As
with most endeavors, what you get out of this book is
largely determined by what you are willing to put into
it. Therefore, readers who invest some time into these
quizzes will find their effort repaid handsomely with in-
creased understanding of parallel programming.

Answers to the quizzes may be found in Appendix F
starting on page 385.

Quick Quiz 1.14: Where are the answers to the Quick
Quizzes found? W

Quick Quiz 1.15: Some of the Quick Quiz questions
seem to be from the viewpoint of the reader rather than
the author. Is that really the intent?

Quick Quiz 1.16: These Quick Quizzes just are not
my cup of tea. What do you recommend? W

1.5.2 Sample Source Code

This book discusses its fair share of source code, and
in many cases this source code may be found in the
CodeSamples directory of this book’s git tree. For
example, on UNIX systems, you should be able to type:

find CodeSamples -name rcu_rcpls.c -print

to locate the file rcu_rcpls. c, which is called out
in Section 8.3.5. Other types of systems have well-known
ways of locating files by filename.

The source to this book may be found in the git
archive at git://git.kernel.org/pub/scm/
linux/kernel/git/paulmck/perfbook.git,
and git itself is available as part of most mainstream
Linux distributions. To create and display a current
ISTEX source tree of this book, use the list of Linux
commands shown in Figure 1.7. In some environments,

git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git

10 CHAPTER 1. INTRODUCTION

git clone git://git.kernel.org/pub/scm/linux/kernel/git/paulmck/perfbook.git
cd perfbook

make

evince perfbook.pdf

=Sw N

Figure 1.7: Creating an Up-To-Date PDF

git remote update

git checkout origin/master
make

evince perfbook.pdf

=Sw N

Figure 1.8: Generating an Updated PDF

the evince that displays perfbook.pdf may need
to be replaced, for example, with acroread. The
git clone command need only be used the first
time you create a PDF, subsequently, you can run the
commands shown in Figure 1.8 to pull in any updates and
generate an updated PDF. The commands in Figure 1.8
must be run within the perfbook directory created by
the commands shown in Figure 1.7.

PDFs of this book are sporadically posted at
http://kernel.org/pub/linux/kernel/
people/paulmck/perfbook/perfbook.html
and at http://www.rdrop.com/users/
paulmck/perfbook/.

http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://kernel.org/pub/linux/kernel/people/paulmck/perfbook/perfbook.html
http://www.rdrop.com/users/paulmck/perfbook/
http://www.rdrop.com/users/paulmck/perfbook/

Chapter 2

Hardware and its Habits

Most people have an intuitive understanding that pass-
ing messages between systems is considerably more ex-
pensive than performing simple calculations within the
confines of a single system. However, it is not always
so clear that communicating among threads within the
confines of a single shared-memory system can also be
quite expensive. This chapter therefore looks the cost
of synchronization and communication within a shared-
memory system. This chapter merely scratches the sur-
face of shared-memory parallel hardware design; readers
desiring more detail would do well to start with a recent
edition of Hennessy and Patterson’s classic text [HP95].

Quick Quiz 2.1: Why should parallel programmers
bother learning low-level properties of the hardware?
Wouldn’t it be easier, better, and more general to remain
at a higher level of abstraction? Hl

2.1 Overview

Careless reading of computer-system specification sheets
might lead one to believe that CPU performance is a
footrace on a clear track, as illustrated in Figure 2.1, where
the race always goes to the swiftest.

Although there are a few CPU-bound benchmarks that
approach the ideal shown in Figure 2.1, the typical pro-
gram more closely resembles an obstacle course than
arace track. This is because the internal architecture of
CPUs has changed dramatically over the past few decades,
courtesy of Moore’s Law. These changes are described in
the following sections.

2.1.1 Pipelined CPUs

In the early 1980s, the typical microprocessor fetched an
instruction, decoded it, and executed it, typically taking
at least three clock cycles to complete one instruction

11

CPU Benchmar k.
“Trac kmeet

Figure 2.1: CPU Performance at its Best

before proceeding to the next. In contrast, the CPU of
the late 1990s and early 2000s will be executing many
instructions simultaneously, using a deep “pipeline” to
control the flow of instructions internally to the CPU, this
difference being illustrated by Figure 2.2.

Achieving full performance with a CPU having a long
pipeline requires highly predictable control flow through
the program. Suitable control flow can be provided by
a program that executes primarily in tight loops, for ex-
ample, programs doing arithmetic on large matrices or
vectors. The CPU can then correctly predict that the
branch at the end of the loop will be taken in almost all
cases. In such programs, the pipeline can be kept full and

12

L2 CAGHE 24 ¢
PIPELY NE

Figure 2.2: CPUs Old and New

the CPU can execute at full speed.

If, on the other hand, the program has many loops with
small loop counts, or if the program is object oriented
with many virtual objects that can reference many differ-
ent real objects, all with different implementations for
frequently invoked member functions, then it is difficult
or even impossible for the CPU to predict where a given
branch might lead. The CPU must then either stall waiting
for execution to proceed far enough to know for certain
where the branch will lead, or guess — and, in the face
of programs with unpredictable control flow, frequently
guess wrong. In either case, the pipeline will empty and
have to be refilled, leading to stalls that can drastically
reduce performance, as fancifully depicted in Figure 2.3.

Unfortunately, pipeline flushes are not the only hazards
in the obstacle course that modern CPUs must run. The
next section covers the hazards of referencing memory.

2.1.2 Memory References

In the 1980s, it often took less time for a microprocessor
to load a value from memory than it did to execute an
instruction. In 2006, a microprocessor might be capable
of executing hundreds or even thousands of instructions in
the time required to access memory. This disparity is due
to the fact that Moore’s Law has increased CPU perfor-
mance at a much greater rate than it has increased memory
performance, in part due to the rate at which memory sizes
have grown. For example, a typical 1970s minicomputer
might have 4KB (yes, kilobytes, not megabytes, let alone

CHAPTER 2. HARDWARE AND ITS HABITS

Figure 2.3: CPU Meets a Pipeline Flush

gigabytes) of main memory, with single-cycle access.! In
2008, CPU designers still can construct a 4KB memory
with single-cycle access, even on systems with multi-GHz
clock frequencies. And in fact they frequently do con-
struct such memories, but they now call them “level-0
caches”.

Although the large caches found on modern micropro-
cessors can do quite a bit to help combat memory-access
latencies, these caches require highly predictable data-
access patterns to successfully hide memory latencies.
Unfortunately, common operations, such as traversing a
linked list, have extremely unpredictable memory-access
patterns — after all, if the pattern was predictable, us
software types would not bother with the pointers, right?

Therefore, as shown in Figure 2.4, memory references
are often severe obstacles for modern CPUs.

Thus far, we have only been considering obstacles
that can arise during a given CPU’s execution of single-
threaded code. Multi-threading presents additional obsta-
cles to the CPU, as described in the following sections.

2.1.3 Atomic Operations

One such obstacle is atomic operations. The whole idea of
an atomic operation in some sense conflicts with the piece-
at-a-time assembly-line operation of a CPU pipeline. To
hardware designers’ credit, modern CPUs use a number

U1t is only fair to add that each of these single cycles consumed no
less than 1.6microseconds.

2.1. OVERVIEW

Figure 2.4: CPU Meets a Memory Reference

of extremely clever tricks to make such operations look
atomic even though they are in fact being executed piece-
at-a-time, but even so, there are cases where the pipeline
must be delayed or even flushed in order to permit a given
atomic operation to complete correctly.

The resulting effect on performance is depicted in Fig-
ure 2.5.

Unfortunately, atomic operations usually apply only to
single elements of data. Because many parallel algorithms
require that ordering constraints be maintained between
updates of multiple data elements, most CPUs provide
memory barriers. These memory barriers also serve as
performance-sapping obstacles, as described in the next
section.

Quick Quiz 2.2: What types of machines would allow
atomic operations on multiple data elements? l

Fortunately, CPU designers have focused heavily on
atomic operations, so that as of early 2012 they have
greately reduced (but by no means eliminated) their over-
head.

2.14 Memory Barriers

Memory barriers will be considered in more detail in
Section 13.2 and Appendix C. In the meantime, consider
the following simple lock-based critical section:

13

Figure 2.5: CPU Meets an Atomic Operation

1 spin_lock (&mylock) ;
2 a=a+ 1;
3 spin_unlock (&mylock) ;

If the CPU were not constrained to execute these state-
ments in the order shown, the effect would be that the
variable “a” would be incremented without the protection
of “mylock”, which would certainly defeat the purpose
of acquiring it. To prevent such destructive reordering,
locking primitives contain either explicit or implicit mem-
ory barriers. Because the whole purpose of these memory
barriers is to prevent reorderings that the CPU would
otherwise undertake in order to increase performance,
memory barriers almost always reduce performance, as
depicted in Figure 2.6.

As with atomic operations, CPU designers have been
working hard to reduce memory-barrier overhead, and
have made substantial progress.

2.1.5 Cache Misses

An additional multi-threading obstacle to CPU perfor-
mance is the “cache miss”. As noted earlier, modern
CPUs sport large caches in order to reduce the perfor-
mance penalty that would otherwise be incurred due to
high memory latencies. However, these caches are actu-
ally counter-productive for variables that are frequently
shared among CPUs. This is because when a given CPU

14

Figure 2.6: CPU Meets a Memory Barrier

wishes to modify the variable, it is most likely the case
that some other CPU has modified it recently. In this case,
the variable will be in that other CPU’s cache, but not in
this CPU’s cache, which will therefore incur an expensive
cache miss (see Section C.1 for more detail). Such cache
misses form a major obstacle to CPU performance, as
shown in Figure 2.7.

Quick Quiz 2.3: So have CPU designers also greatly
reduced the overhead of cache misses? l

2.1.6 I/O Operations

A cache miss can be thought of as a CPU-to-CPU I/O
operation, and as such is one of the cheapest I/O oper-
ations available. I/O operations involving networking,
mass storage, or (worse yet) human beings pose much
greater obstacles than the internal obstacles called out in
the prior sections, as illustrated by Figure 2.8.

This is one of the differences between shared-memory
and distributed-system parallelism: shared-memory paral-
lel programs must normally deal with no obstacle worse
than a cache miss, while a distributed parallel program
will typically incur the larger network communication
latencies. In both cases, the relevant latencies can be

CHAPTER 2. HARDWARE AND ITS HABITS

CACHE- |
MISS |

TOLL
BOOTH

Figure 2.7: CPU Meets a Cache Miss

thought of as a cost of communication—a cost that would
be absent in a sequential program. Therefore, the ratio
between the overhead of the communication to that of the
actual work being performed is a key design parameter.
A major goal of parallel hardware design is to reduce this
ratio as needed to achieve the relevant performance and
scalability goals. In turn, as will be seen in Chapter 35,
a major goal of parallel software design is to reduce the
frequency of expensive operations like communications
cache misses.

Of course, it is one thing to say that a given operation is
an obstacle, and quite another to show that the operation
is a significant obstacle. This distinction is discussed in
the following sections.

2.2 Overheads

This section presents actual overheads of the obstacles to
performance listed out in the previous section. However,
it is first necessary to get a rough view of hardware system
architecture, which is the subject of the next section.

2.2. OVERHEADS

Please sty o7
the \ir\e.YO\X\‘/
W is vex
Sl o pp s

Figure 2.8: CPU Waits for I/O Completion

2.2.1 Hardware System Architecture

Figure 2.9 shows a rough schematic of an eight-core com-
puter system. Each die has a pair of CPU cores, each
with its cache, as well as an interconnect allowing the pair
of CPUs to communicate with each other. The system
interconnect in the middle of the diagram allows the four
dies to communicate, and also connects them to main
memory.

Data moves through this system in units of “cache
lines”, which are power-of-two fixed-size aligned blocks
of memory, usually ranging from 32 to 256 bytes in size.
When a CPU loads a variable from memory to one of its
registers, it must first load the cacheline containing that
variable into its cache. Similarly, when a CPU stores a
value from one of its registers into memory, it must also
load the cacheline containing that variable into its cache,
but must also ensure that no other CPU has a copy of that
cacheline.

For example, if CPU 0 were to perform a compare-
and-swap (CAS) operation on a variable whose cacheline
resided in CPU 7’s cache, the following over-simplified
sequence of events might ensue:

1. CPU 0 checks its local cache, and does not find the
cacheline.

15
CPUO CPU 1 CPU 2 CPU 3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory |<—=| System Interconnect |<—=| Memory

Z N
Interconnect Interconnect
Cache Cache Cache Cache
CPU4 CPUS5 CPUGB CPU7

Speed-of-Light Round-Trip Distance in Vacuum
for 1.8GHz Clock Period (8cm)

Figure 2.9: System Hardware Architecture

2. The request is forwarded to CPU 0’s and 1’s intercon-
nect, which checks CPU 1’s local cache, and does
not find the cacheline.

3. The request is forwarded to the system interconnect,
which checks with the other three dies, learning that
the cacheline is held by the die containing CPU 6
and 7.

4. The request is forwarded to CPU 6’s and 7’s inter-
connect, which checks both CPUs’ caches, finding
the value in CPU 7’s cache.

5. CPU 7 forwards the cacheline to its interconnect,
and also flushes the cacheline from its cache.

6. CPU 6’s and 7’s interconnect forwards the cacheline
to the system interconnect.

7. The system interconnect forwards the cacheline to
CPU 0’s and 1’s interconnect.

8. CPU 0’s and 1’s interconnect forwards the cacheline
to CPU 0’s cache.

9. CPU 0 can now perform the CAS operation on the
value in its cache.

Quick Quiz 2.4: This is a simplified sequence of
events? How could it possibly be any more complex?
]

Quick Quiz 2.5: Why is it necessary to flush the cache-
line from CPU 7’s cache?

16
Operation H Cost (ns) \ Ratio
Clock period 0.6 1.0
Best-case CAS 37.9 63.2
Best-case lock 65.6 109.3
Single cache miss 139.5 232.5
CAS cache miss 306.0 510.0
Comms Fabric 3,000 5,000
Global Comms 130,000,000 | 216,000,000

Table 2.1: Performance of Synchronization Mechanisms
on 4-CPU 1.8GHz AMD Opteron 844 System

2.2.2 Costs of Operations

The overheads of some common operations important
to parallel programs are displayed in Table 2.1. This
system’s clock period rounds to 0.6ns. Although it is not
unusual for modern microprocessors to be able to retire
multiple instructions per clock period, the operations will
be normalized to a full clock period in the third column,
labeled “Ratio”. The first thing to note about this table is
the large values of many of the ratios.

The best-case CAS operation consumes almost forty
nanoseconds, a duration more than sixty times that of the
clock period. Here, “best case” means that the same CPU
now performing the CAS operation on a given variable
was the last CPU to operate on this variable, so that the
corresponding cache line is already held in that CPU’s
cache, Similarly, the best-case lock operation (a “round
trip” pair consisting of a lock acquisition followed by
a lock release) consumes more than sixty nanoseconds,
or more than one hundred clock cycles. Again, “best
case” means that the data structure representing the lock
is already in the cache belonging to the CPU acquiring and
releasing the lock. The lock operation is more expensive
than CAS because it requires two atomic operations on
the lock data structure.

An operation that misses the cache consumes almost
one hundred and forty nanoseconds, or more than two
hundred clock cycles. The code used for this cache-miss
measurement passes the cache line back and forth between
a pair of CPUs, so this cache miss is satisfied not from
memory, but rather from the other CPU’s cache. A CAS
operation, which must look at the old value of the variable
as well as store a new value, consumes over three hundred

nanoseconds, or more than five hundred clock cycles.

Think about this a bit. In the time required to do one CAS
operation, the CPU could have executed more than five
hundred normal instructions. This should demonstrate

CHAPTER 2. HARDWARE AND ITS HABITS

Figure 2.10: Hardware and Software: On Same Side

the limitations not only of fine-grained locking, but of any
other synchronization mechanism relying on fine-grained
global agreement.

Quick Quiz 2.6: Surely the hardware designers could
be persuaded to improve this situation! Why have they
been content with such abysmal performance for these
single-instruction operations? ll

I/O operations are even more expensive. A high per-
formance (and expensive!) communications fabric, such
as InfiniBand or any number of proprietary interconnects,
has a latency of roughly three microseconds, during which
time five thousand instructions might have been executed.
Standards-based communications networks often require
some sort of protocol processing, which further increases
the latency. Of course, geographic distance also increases
latency, with the theoretical speed-of-light latency around
the world coming to roughly 130 milliseconds, or more
than 200 million clock cycles.

Quick Quiz 2.7: These numbers are insanely large!
How can I possibly get my head around them? H

In short, hardware and software engineers are really
fighting on the same side, trying to make computers go
fast despite the best efforts of the laws of physics, as
fancifully depicted in Figure 2.10 where our data stream
is trying its best to exceed the speed of light. The next
section discusses some of the things that the hardware
engineers might (or might not) be able to do. Software’s
contribution to this fight is outlined in the remaining chap-
ters of this book.

2.3 Hardware Free Lunch?

The major reason that concurrency has been receiving so
much focus over the past few years is the end of Moore’s-

2.3. HARDWARE FREE LUNCH?

Law induced single-threaded performance increases (or
“free lunch” [Sut08]), as shown in Figure 1.1 on page 3.
This section briefly surveys a few ways that hardware
designers might be able to bring back some form of the
“free lunch”.

However, the preceding section presented some sub-
stantial hardware obstacles to exploiting concurrency.
One severe physical limitation that hardware designers
face is the finite speed of light. As noted in Figure 2.9
on page 15, light can travel only about an 8-centimeters
round trip in a vacuum during the duration of a 1.8 GHz
clock period. This distance drops to about 3 centimeters
for a 5 GHz clock. Both of these distances are relatively
small compared to the size of a modern computer system.

To make matters even worse, electrons in silicon move
from three to thirty times more slowly than does light
in a vacuum, and common clocked logic constructs run
still more slowly, for example, a memory reference may
need to wait for a local cache lookup to complete before
the request may be passed on to the rest of the system.
Furthermore, relatively low speed and high power drivers
are required to move electrical signals from one silicon
die to another, for example, to communicate between a
CPU and main memory.

Quick Quiz 2.8: But individual electrons don’t move
anywhere near that fast, even in conductors!!! The elec-
tron drift velocity in a conductor under the low voltages
found in semiconductors is on the order of only one mil-
limeter per second. What gives??? il

There are nevertheless some technologies (both hard-
ware and software) that might help improve matters:

1. 3D integration,

2. Novel materials and processes,

3. Substituting light for electrons,

4. Special-purpose accelerators, and

5. Existing parallel software.

Each of these is described in one of the following sec-
tions.

2.3.1 3D Integration

3-dimensional integration (3DI) is the practice of bonding
very thin silicon dies to each other in a vertical stack.
This practice provides potential benefits, but also poses
significant fabrication challenges [Kni08].

17

70 uinZ\

[<—=

3cm 1.5cm

Figure 2.11: Latency Benefit of 3D Integration

Perhaps the most important benefit of 3DI is decreased
path length through the system, as shown in Figure 2.11.
A 3-centimeter silicon die is replaced with a stack of four
1.5-centimeter dies, in theory decreasing the maximum
path through the system by a factor of two, keeping in
mind that each layer is quite thin. In addition, given
proper attention to design and placement, long horizontal
electrical connections (which are both slow and power
hungry) can be replaced by short vertical electrical con-
nections, which are both faster and more power efficient.

However, delays due to levels of clocked logic will
not be decreased by 3D integration, and significant man-
ufacturing, testing, power-supply, and heat-dissipation
problems must be solved for 3D integration to reach pro-
duction while still delivering on its promise. The heat-
dissipation problems might be solved using semiconduc-
tors based on diamond, which is a good conductor for
heat, but an electrical insulator. That said, it remains
difficult to grow large single diamond crystals, to say
nothing of slicing them into wafers. In addition, it seems
unlikely that any of these technologies will be able to de-
liver the exponential increases to which some people have
become accustomed. That said, they may be necessary
steps on the path to the late Jim Gray’s “smoking hairy
golf balls” [Gra02].

2.3.2 Novel Materials and Processes

Stephen Hawking is said to have claimed that semiconduc-
tor manufacturers have but two fundamental problems: (1)
the finite speed of light and (2) the atomic nature of mat-
ter [Gar(Q7]. It is possible that semiconductor manufactur-
ers are approaching these limits, but there are nevertheless
a few avenues of research and development focused on
working around these fundamental limits.

One workaround for the atomic nature of matter are so-
called “high-K dielectric” materials, which allow larger

18

devices to mimic the electrical properties of infeasibly
small devices. These materials pose some severe fabrica-
tion challenges, but nevertheless may help push the fron-
tiers out a bit farther. Another more-exotic workaround
stores multiple bits in a single electron, relying on the
fact that a given electron can exist at a number of energy
levels. It remains to be seen if this particular approach can
be made to work reliably in production semiconductor
devices.

Another proposed workaround is the “quantum dot”
approach that allows much smaller device sizes, but which
is still in the research stage.

2.3.3 Light, Not Electrons

Although the speed of light would be a hard limit, the fact
is that semiconductor devices are limited by the speed of
electrons rather than that of light, given that electrons in
semiconductor materials move at between 3% and 30%
of the speed of light in a vacuum. The use of copper
connections on silicon devices is one way to increase the
speed of electrons, and it is quite possible that additional
advances will push closer still to the actual speed of light.
In addition, there have been some experiments with tiny
optical fibers as interconnects within and between chips,
based on the fact that the speed of light in glass is more
than 60% of the speed of light in a vacuum. One obsta-
cle to such optical fibers is the inefficiency conversion
between electricity and light and vice versa, resulting in
both power-consumption and heat-dissipation problems.

That said, absent some fundamental advances in the
field of physics, any exponential increases in the speed of
data flow will be sharply limited by the actual speed of
light in a vacuum.

2.3.4 Special-Purpose Accelerators

A general-purpose CPU working on a specialized problem
is often spending significant time and energy doing work
that is only tangentially related to the problem at hand.
For example, when taking the dot product of a pair of
vectors, a general-purpose CPU will normally use a loop
(possibly unrolled) with a loop counter. Decoding the
instructions, incrementing the loop counter, testing this
counter, and branching back to the top of the loop are in
some sense wasted effort: the real goal is instead to multi-
ply corresponding elements of the two vectors. Therefore,
a specialized piece of hardware designed specifically to
multiply vectors could get the job done more quickly and
with less energy consumed.

CHAPTER 2. HARDWARE AND ITS HABITS

This is in fact the motivation for the vector instructions
present in many commodity microprocessors. Because
these instructions operate on multiple data items simulta-
neously, they would permit a dot product to be computed
with less instruction-decode and loop overhead.

Similarly, specialized hardware can more efficiently
encrypt and decrypt, compress and decompress, encode
and decode, and many other tasks besides. Unfortunately,
this efficiency does not come for free. A computer system
incorporating this specialized hardware will contain more
transistors, which will consume some power even when
not in use. Software must be modified to take advantage
of this specialized hardware, and this specialized hard-
ware must be sufficiently generally useful that the high
up-front hardware-design costs can be spread over enough
users to make the specialized hardware affordable. In part
due to these sorts of economic considerations, specialized
hardware has thus far appeared only for a few application
areas, including graphics processing (GPUs), vector pro-
cessors (MMX, SSE, and VMX instructions), and, to a
lesser extent, encryption.

Unlike the server and PC arena, smartphones have long
used a wide variety of hardware accelerators. These hard-
ware accelerators are often used for media decoding, so
much so that a high-end MP3 player might be able to play
audio for several minutes—with its CPU fully powered
off the entire time. The purpose of these accelerators
is to improve energy efficiency and thus extend battery
life: special purpose hardware can often compute more
efficiently than can a general-purpose CPU. This is an-
other example of the principle called out in Section 1.2.3:
Generality is almost never free.

Nevertheless, given the end of Moore’s-Law-induced
single-threaded performance increases, it seems safe to
predict that there will be an increasing variety of special-
purpose hardware going forward.

2.3.5 Existing Parallel Software

Although multicore CPUs seem to have taken the com-
puting industry by surprise, the fact remains that shared-
memory parallel computer systems have been commer-
cially available for more than a quarter century. This is
more than enough time for significant parallel software to
make its appearance, and it indeed has. Parallel operating
systems are quite commonplace, as are parallel threading
libraries, parallel relational database management sys-
tems, and parallel numerical software. Use of existing
parallel software can go a long ways towards solving any

2.4. SOFTWARE DESIGN IMPLICATIONS

parallel-software crisis we might encounter.

Perhaps the most common example is the parallel re-
lational database management system. It is not unusual
for single-threaded programs, often written in high-level
scripting languages, to access a central relational database
concurrently. In the resulting highly parallel system, only
the database need actually deal directly with parallelism.
A very nice trick when it works!

2.4 Software Design Implications

The values of the ratios in Table 2.1 are critically im-
portant, as they limit the efficiency of a given parallel
application. To see this, suppose that the parallel applica-
tion uses CAS operations to communicate among threads.
These CAS operations will typically involve a cache miss,
that is, assuming that the threads are communicating pri-
marily with each other rather than with themselves. Sup-
pose further that the unit of work corresponding to each
CAS communication operation takes 300ns, which is suf-
ficient time to compute several floating-point transcen-
dental functions. Then about half of the execution time
will be consumed by the CAS communication operations!
This in turn means that a two-CPU system running such a
parallel program would run no faster than one a sequential
implementation running on a single CPU.

The situation is even worse in the distributed-system
case, where the latency of a single communications oper-
ation might take as long as thousands or even millions of
floating-point operations. This illustrates how important
it is for communications operations to be extremely infre-
quent and to enable very large quantities of processing.

Quick Quiz 2.9: Given that distributed-systems com-
munication is so horribly expensive, why does anyone
bother with them? ll

The lesson should be quite clear: parallel algorithms
must be explicitly designed to run nearly independent
threads. The less frequently the threads communicate,
whether by atomic operations, locks, or explicit messages,
the better the application’s performance and scalability
will be. In short, achieving excellent parallel performance
and scalability means striving for embarrassingly paral-
lel algorithms and implementations, whether by careful
choice of data structures and algorithms, use of existing
parallel applications and environments, or transforming
the problem into one for which an embarrassingly parallel
solution exists.

Quick Quiz 2.10: OK, if we are going to have to apply
distributed-programming techniques to shared-memory

19

parallel programs, why not just always use these dis-
tributed techniques and dispense with shared memory?
]

Chapter 3 will cover some of the low-level tools used
for parallel programming, Chapter 4 will investigate prob-
lems and solutions to parallel counting, and Chapter 5
will discuss design disciplines that promote performance
and scalability.

20

CHAPTER 2. HARDWARE AND ITS HABITS

Chapter 3

Tools of the Trade

This chapter provides a brief introduction to some ba-
sic tools of the parallel-programming trade, focusing
mainly on those available to user applications running
on operating systems similar to Linux. Section 3.1 be-
gins with scripting languages, Section 3.2 describes the
multi-process parallelism supported by the POSIX API,
Section 3.2 touches on POSIX threads, and finally, Sec-
tion 3.3 describes atomic operations.

Please note that this chapter provides but a brief intro-
duction. More detail is available from the references cited,
and more information on how best to use these tools will
be provided in later chapters.

3.1 Scripting Languages

The Linux shell scripting languages provide simple but
effective ways of managing parallelism. For example,
suppose that you had a program compute_it that you
needed to run twice with two different sets of arguments.
This can be accomplished using UNIX shell scripting as
follows:

compute_it 1 > compute_it.l.out &
compute_it 2 > compute_it.2.out &
wait

cat compute_it.l.out

cat compute_it.2.out

g W N

Lines 1 and 2 launch two instances of this program,
redirecting their output to two separate files, with the &
character directing the shell to run the two instances of
the program in the background. Line 3 waits for both
instances to complete, and lines 4 and 5 display their
output. The resulting execution is as shown in Figure 3.1:
the two instances of compute_it execute in parallel,
wait completes after both of them do, and then the two
instances of cat execute sequentially.

Quick Quiz 3.1: But this silly shell script isn’t a real

21

compute_it 1 > compute_it 2 >
compute_it.l.out & compute_it.2.out &

’cat compute_it.1l.out ‘

’cat compute_it.2.out ‘

Figure 3.1: Execution Diagram for Parallel Shell Execu-
tion

parallel program! Why bother with such trivia??? l

Quick Quiz 3.2: Is there a simpler way to create a
parallel shell script? If so, how? If not, why not? l

For another example, the make software-build script-
ing language provides a —7 option that specifies how
much parallelism should be introduced into the build pro-
cess. For example, typing make -3j4 when building a
Linux kernel specifies that up to four parallel compiles be
carried out concurrently.

It is hoped that these simple examples convince you
that parallel programming need not always be complex or
difficult.

Quick Quiz 3.3: But if script-based parallel program-
ming is so easy, why bother with anything else? l

22

1 pid = fork();
2 if (pid == 0) {
3 /* child =/
} else if (pid < 0) {
/+ parent, upon error */
perror ("fork");
exit (-1);
} else {
/* parent, pid == child ID =%/

O 0 W J o Ul

Figure 3.2: Using the fork() Primitive

3.2 POSIX Multiprocessing

This section scratches the surface of the POSIX environ-
ment, including pthreads [Ope97], as this environment is
readily available and widely implemented. Section 3.2.1
provides a glimpse of the POSIX fork () and related
primitives, Section 3.2.2 touches on thread creation and
destruction, Section 3.2.3 gives a brief overview of POSIX
locking, and, finally, Section 3.4 presents the analogous
operations within the Linux kernel.

3.2.1 POSIX Process Creation and De-
struction

Processes are created using the fork () primitive, they
may be destroyed using the k111 () primitive, they may
destroy themselves using the exit () primitive. A pro-
cess executing a fork () primitive is said to be the “par-
ent” of the newly created process. A parent may wait on
its children using the wait () primitive.

Please note that the examples in this section are quite
simple. Real-world applications using these primitives
might need to manipulate signals, file descriptors, shared
memory segments, and any number of other resources. In
addition, some applications need to take specific actions
if a given child terminates, and might also need to be
concerned with the reason that the child terminated. These
concerns can of course add substantial complexity to the
code. For more information, see any of a number of
textbooks on the subject [Ste92].

If fork () succeeds, it returns twice, once for the
parent and again for the child. The value returned from
fork () allows the caller to tell the difference, as shown
in Figure 3.2 (forkjoin.c). Line 1 executes the
fork () primitive, and saves its return value in local
variable pid. Line 2 checks to see if pid is zero, in
which case, this is the child, which continues on to ex-
ecute line 3. As noted earlier, the child may terminate
viathe exit () primitive. Otherwise, this is the parent,

CHAPTER 3. TOOLS OF THE TRADE

1 void waitall (void)

2 {

3 int pid;

4 int status;

5

6 for (;;) {

7 pid = wait (&status);
8 if (pid == -1) {

9 if (errno == ECHILD)
10 break;

11 perror ("wait");
12 exit (-1);
13 }

Figure 3.3: Using the wait() Primitive

which checks for an error return from the fork () prim-
itive on line 4, and prints an error and exits on lines 5-7
if so. Otherwise, the fork () has executed successfully,
and the parent therefore executes line 9 with the variable
pid containing the process ID of the child.

The parent process may use the wait () primitive
to wait for its children to complete. However, use of
this primitive is a bit more complicated than its shell-
script counterpart, as each invocation of wait () waits
for but one child process. It is therefore customary to
wrap wait () into a function similar to the waitall ()
function shown in Figure 3.3 (api-pthread.h), this
waitall () function having semantics similar to the
shell-script wait command. Each pass through the loop
spanning lines 6-15 waits on one child process. Line 7
invokes the wait () primitive, which blocks until a child
process exits, and returns that child’s process ID. If the
process ID is instead -1, this indicates that the wait ()
primitive was unable to wait on a child. If so, line 9
checks for the ECHILD errno, which indicates that there
are no more child processes, so that line 10 exits the loop.
Otherwise, lines 11 and 12 print an error and exit.

Quick Quiz 3.4: Why does this wait () primitive
need to be so complicated? Why not just make it work
like the shell-script wait does?

It is critically important to note that the parent and
child do not share memory. This is illustrated by the
program shown in Figure 3.4 (forkjoinvar.c), in
which the child sets a global variable x to 1 on line 6,
prints a message on line 7, and exits on line 8. The parent
continues at line 14, where it waits on the child, and on
line 15 finds that its copy of the variable x is still zero.
The output is thus as follows:

Child process set x=1
Parent process sees x=0

3.2. POSIX MULTIPROCESSING

1 int x = 0;

2 int pid;

3

4 pid = fork();

5 if (pid == 0) { /* child */

6 x = 1;

7 printf ("Child process set x=1\n");

8 exit (0);

9}
10 if (pid < 0) { /* parent, upon error x/

11 perror ("fork");

12 exit (-1);

13 }

14 waitall();

15 printf ("Parent process sees x=%d\n", x);

Figure 3.4: Processes Created Via fork() Do Not Share
Memory

P
=]
=3
b
I
o

void *mythread(void xarg)

{
x = 1;
printf ("Child process set x=1\n");
return NULL;

W J o0 WN

10 int main(int argc, char xargvl[])
11 |

12 pthread_t tid;

13 void *vp;

14

15 if (pthread_create(&tid, NULL,

16 mythread, NULL) != 0) {
17 perror ("pthread_create");

18 exit (-1);

19 }

20 if (pthread_join(tid, &vp) != 0) {

21 perror ("pthread_join");

22 exit (-1);

23 }

24 printf ("Parent process sees x=%d\n", x);
25 return 0;

26 }

Figure 3.5: Threads Created Via pthread_create ()
Share Memory

Quick Quiz 3.5: Isn’t there a lot more to fork () and
wait () than discussed here?

The finest-grained parallelism requires shared memory,
and this is covered in Section 3.2.2. That said, shared-
memory parallelism can be significantly more complex
than fork-join parallelism.

3.2.2 POSIX Thread Creation and De-
struction

To create a thread within an existing process, invoke the
pthread_create () primitive, for example, as shown

23

on lines 15 and 16 of Figure 3.5 (pcreate.c). The
first argument is a pointer to a pthread_t in which
to store the ID of the thread to be created, the second
NULL argument is a pointer to an optional pthread_
attr_t, the third argument is the function (in this case,
mythread () that is to be invoked by the new thread,
and the last NULL argument is the argument that will be
passed to mythread.

In this example, mythread () simply returns, but it
could instead call pthread_exit ().

Quick Quiz 3.6: If the mythread () function in Fig-
ure 3.5 can simply return, why bother with pthread_
exit ()?7H

The pthread_join () primitive, shown on line 20,
is analogous to the fork-join wait () primitive. It blocks
until the thread specified by the t id variable completes
execution, either by invoking pthread_exit () or
by returning from the thread’s top-level function. The
thread’s exit value will be stored through the pointer
passed as the second argument to pthread_join ().
The thread’s exit value is either the value passed to
pthread_exit () or the value returned by the thread’s
top-level function, depending on how the thread in ques-
tion exits.

The program shown in Figure 3.5 produces output as
follows, demonstrating that memory is in fact shared be-
tween the two threads:

Child process set x=1
Parent process sees x=1

Note that this program carefully makes sure that only
one of the threads stores a value to variable x at a time.
Any situation in which one thread might be storing a value
to a given variable while some other thread either loads
from or stores to that same variable is termed a “data
race”. Because the C language makes no guarantee that
the results of a data race will be in any way reasonable,
we need some way of safely accessing and modifying data
concurrently, such as the locking primitives discussed in
the following section.

Quick Quiz 3.7: If the C language makes no guaran-
tees in presence of a data race, then why does the Linux
kernel have so many data races? Are you trying to tell me
that the Linux kernel is completely broken??? ll

3.2.3 POSIX Locking

The POSIX standard allows the programmer to avoid data
races via “POSIX locking”. POSIX locking features a
number of primitives, the most fundamental of which are

24

pthread_mutex_lock () and pthread_mutex_
unlock (). These primitives operate on locks, which are
of type pthread_mutex_t. These locks may be de-
clared statically and initialized with PTHREAD_MUTEX__
INITIALIZER, or they may be allocated dynamically
and initialized using the pthread_mutex_init ()
primitive. The demonstration code in this section will
take the former course.

The pthread_mutex_lock () primitive “acquires’
the specified lock, and the pthread_mutex_
unlock () “releases” the specified lock. Because these
are “exclusive” locking primitives, only one thread at a
time may “hold” a given lock at a given time. For exam-
ple, if a pair of threads attempt to acquire the same lock
concurrently, one of the pair will be “granted” the lock
first, and the other will wait until the first thread releases
the lock.

Quick Quiz 3.8: What if I want several threads to hold
the same lock at the same time?

1)

This exclusive-locking property is demonstrated using
the code shown in Figure 3.6 (Lock. c). Line 1 defines
and initializes a POSIX lock named 1ock_ a, while line 2
similarly defines and initializes a lock named lock_b.
Line 3 defines and initializes a shared variable x.

Lines 5-28 defines a function lock_reader ()
which repeatedly reads the shared variable x while hold-
ing the lock specified by arg. Line 10 casts arg to
a pointer to a pthread_mutex_t, as required by the
pthread_mutex_lock () and pthread_mutex_
unlock () primitives.

Quick Quiz 3.9: Why not simply make the argument
to lock_reader () on line 5 of Figure 3.6 be a pointer
toapthread_mutex_t?

Lines 12-15 acquire the specified pthread_mutex_
t, checking for errors and exiting the program if any
occur. Lines 16-23 repeatedly check the value of %, print-
ing the new value each time that it changes. Line 22
sleeps for one millisecond, which allows this demonstra-
tion to run nicely on a uniprocessor machine. Line 24-27
release the pthread_mutex_t, again checking for er-
rors and exiting the program if any occur. Finally, line 28
returns NULL, again to match the function type required
by pthread_create ().

Quick Quiz 3.10: Writing four lines of code for each
acquisition and release of a pthread_mutex_t sure
seems painful! Isn’t there a better way? W

Lines 31-49 of Figure 3.6 shows lock_writer (),
which periodically update the shared variable x while
holding the specified pthread_mutex_t. As with

CHAPTER 3. TOOLS OF THE TRADE

1 pthread_mutex_t lock_a = PTHREAD_MUTEX_INITIALIZER;
2 pthread_mutex_t lock_b = PTHREAD_MUTEX_INITIALIZER;
3 int x = 0;
4
5 void xlock_reader (void xarg)
6 {
7 int 1i;
8 int newx = -1;
9 int oldx = -1;
10 pthread_mutex_t *pmlp = (pthread_mutex_t =x)arg;
11
12 if (pthread_mutex_lock (pmlp) != 0) {
13 perror ("lock_reader:pthread_mutex_lock");
14 exit (-1);
15 }
16 for (1 = 0; 1 < 100; i++) {
17 newx = ACCESS_ONCE (x);
18 if (newx != oldx) {
19 printf ("lock_reader(): x = %d\n", newx);
20 }
21 oldx = newx;
22 poll (NULL, 0, 1);
23 }
24 if (pthread_mutex_unlock (pmlp) != 0) {
25 perror ("lock_reader:pthread_mutex_unlock");
26 exit (-1);
27 }
28 return NULL;
29 }
30
31 void xlock_writer (void =*arg)
32 {
33 int 1i;
34 pthread_mutex_t *pmlp = (pthread_mutex_t =x)arg;
35
36 if (pthread_mutex_lock (pmlp) != 0) {
37 perror ("lock_reader:pthread_mutex_lock");
38 exit (-1);
39 }
40 for (1 = 0; 1 < 3; i++) {
41 ACCESS_ONCE (x) ++;
42 poll (NULL, 0, 5);
43 }
44 if (pthread_mutex_unlock (pmlp) != 0) {
45 perror ("lock_reader:pthread_mutex_unlock") ;
46 exit (-1);
47 }
48 return NULL;
49 }

Figure 3.6: Demonstration of Exclusive Locks

@
N

POSIX MULTIPROCESSING

1 printf ("Creating two threads using same lock:\n");
2 if (pthread_create(&tidl, NULL,

3 lock_reader, &lock_a) != 0) {
4 perror ("pthread_create");

5 exit (-1);

6 }

7 if (pthread_create(&tid2, NULL,

8 lock_writer, &lock_a) != 0) {
9 perror ("pthread_create");
10 exit (-1);
11 }
12 if (pthread_join(tidl, &vp) != 0) {
13 perror ("pthread_join");
14 exit (-1);
15 }
16 if (pthread_join(tid2, &vp) != 0) {
17 perror ("pthread_join");
18 exit (-1);
19 }

Figure 3.7: Demonstration of Same Exclusive Lock

lock_reader (), line 34 casts arg to a pointer to
pthread_mutex_t, lines 36-39 acquires the specified
lock, and lines 44-47 releases it. While holding the lock,
lines 40-43 increment the shared variable x, sleeping
for five milliseconds between each increment. Finally,
lines 44-47 release the lock.

Figure 3.7 shows a code fragment that runs lock_
reader () and lock_writer () as thread using the
same lock, namely, 1ock_a. Lines 2-6 create a thread
running lock_reader (), and then Lines 7-11 create
a thread running lock_writer (). Lines 12-19 wait
for both threads to complete. The output of this code
fragment is as follows:

Creating two threads using same lock:
lock_reader(): x = 0

Because both threads are using the same lock, the
lock_reader () thread cannot see any of the interme-
diate values of x produced by lock_writer () while
holding the lock.

Quick Quiz 3.11: Is “x = 0” the only possible output
from the code fragment shown in Figure 3.7? If so, why?
If not, what other output could appear, and why? l

Figure 3.8 shows a similar code fragment, but this time
using different locks: lock_a for lock_reader ()
and lock_b for lock_writer (). The output of this
code fragment is as follows:

Creating two threads w/different locks:
lock_reader(): x 0

lock_reader () :

lock_reader () :
lock_reader () :

X 1
X 2
X 3

Because the two threads are using different locks, they

25
1 printf ("Creating two threads w/different locks:\n");
2 x = 0;
3 if (pthread_create(&tidl, NULL,
4 lock_reader, &lock_a) != 0) {
5 perror ("pthread_create");
6 exit (-1);
7 }
8 if (pthread_create(&tid2, NULL,
9 lock_writer, &lock_b) != 0) {
10 perror ("pthread_create");
11 exit (-1);
12 }
13 if (pthread_join(tidl, &vp) != 0) {
14 perror ("pthread_join");
15 exit (-1);
16 }
17 if (pthread_join(tid2, &vp) != 0) {
18 perror ("pthread_join");
19 exit (-1);
20 }

Figure 3.8: Demonstration of Different Exclusive Locks

do not exclude each other, and can run concurrently. The
lock_reader () function can therefore see the inter-
mediate values of x stored by lock_writer ().

Quick Quiz 3.12: Using different locks could cause
quite a bit of confusion, what with threads seeing each
others’ intermediate states. So should well-written paral-
lel programs restrict themselves to using a single lock in
order to avoid this kind of confusion? l

Quick Quiz 3.13: In the code shown in Figure 3.8,
is lock_reader () guaranteed to see all the values
produced by lock_writer () ? Why or why not?

Quick Quiz 3.14: Wait a minute here!!! Figure 3.7
didn’t initialize shared variable x, so why does it need to
be initialized in Figure 3.87

Although there is quite a bit more to POSIX exclusive
locking, these primitives provide a good start and are in
fact sufficient in a great many situations. The next section
takes a brief look at POSIX reader-writer locking.

3.2.4 POSIX Reader-Writer Locking

The POSIX API provides a reader-writer lock, which
is represented by a pthread_rwlock_t. As with
pthread _mutex_t, pthread_rwlock_t may
be statically initialized via PTHREAD_RWLOCK_
INITIALIZER or dynamically initialized via
the pthread_rwlock_init () primitive. The
pthread_rwlock_rdlock () primitive read-
acquires the specified pthread_rwlock_t, the
pthread_rwlock_wrlock () primitive write-
acquires it, and the pthread_rwlock_unlock ()
primitive releases it. Only a single thread may write-hold

[\
[@)

pthread_rwlock_t rwl = PTHREAD_RWLOCK_INITIALIZER;
int holdtime = 0;

int thinktime = 0;

long long xreadcounts;

int nreadersrunning = 0;

#define GOFLAG_INIT 0
#define GOFLAG_RUN 1
9 #define GOFLAG_STOP 2
10 char goflag = GOFLAG_INIT;

W J oUW N

12 void *reader (void xarg)

13 {

14 int 1i;

15 long long loopcnt = 0;

16 long me = (long)arg;

17

18 __sync_fetch_and_add(&nreadersrunning, 1);
19 while (ACCESS_ONCE (goflag) == GOFLAG_INIT) {
20 continue;

21 }

22 while (ACCESS_ONCE (goflag) == GOFLAG_RUN) {
23 if (pthread_rwlock_rdlock (&rwl) != 0) {
24 perror ("pthread_rwlock_rdlock");

25 exit (-1);

26 }

27 for (1 = 1; i < holdtime; i++) {

28 barrier();

29 }

30 if (pthread_rwlock_unlock (&rwl) != 0) {
31 perror ("pthread_rwlock_unlock");

32 exit (-1);

33 }

34 for (1 = 1; 1 < thinktime; i++) {

35 barrier();

36 }

37 loopcnt++;

38 }

39 readcounts[me] = loopcnt;

40 return NULL;
41 '}

Figure 3.9: Measuring Reader-Writer Lock Scalability

a given pthread_rwlock_t at any given time, but
multiple threads may read-hold a given pthread_
rwlock_t, at least while there is no thread currently
write-holding it.

As you might expect, reader-writer locks are designed
for read-mostly situations. In these situations, a reader-
writer lock can provide greater scalability than can an
exclusive lock because the exclusive lock is by defini-
tion limited to a single thread holding the lock at any
given time, while the reader-writer lock permits an arbi-
trarily large number of readers to concurrently hold the
lock. However, in practice, we need to know how much
additional scalability is provided by reader-writer locks.

Figure 3.9 (rwlockscale.c) shows one way of
measuring reader-writer lock scalability. Line 1 shows
the definition and initialization of the reader-writer lock,
line 2 shows the holdtime argument controlling the
time each thread holds the reader-writer lock, line 3 shows

CHAPTER 3. TOOLS OF THE TRADE

the thinkt ime argument controlling the time between
the release of the reader-writer lock and the next acqui-
sition, line 4 defines the readcount s array into which
each reader thread places the number of times it acquired
the lock, and line 5 defines the nreadersrunning
variable, which determines when all reader threads have
started running.

Lines 7-10 define goflag, which synchronizes the
start and the end of the test. This variable is initially set to
GOFLAG_INIT, then set to GOFLAG_RUN after all the
reader threads have started, and finally set to GOFLAG__
STOP to terminate the test run.

Lines 12-41 define reader (), which is the
reader thread. Line 18 atomically increments the
nreadersrunning variable to indicate that this thread
is now running, and lines 19-21 wait for the test to start.
The ACCESS_ONCE () primitive forces the compiler to
fetch goflag on each pass through the loop—the com-
piler would otherwise be within its rights to assume that
the value of goflag would never change.

Quick Quiz 3.15: Instead of using ACCESS_ONCE ()
everywhere, why not just declare goflagasvolatile
on line 10 of Figure 3.97 A

Quick Quiz 3.16: ACCESS_ONCE () only affects the
compiler, not the CPU. Don’t we also need memory bar-
riers to make sure that the change in goflag’s value
propagates to the CPU in a timely fashion in Figure 3.9?
|

Quick Quiz 3.17: Would it ever be necessary to
use ACCESS_ONCE () when accessing a per-thred vari-
able, for example, a variable declared using the gcc ___
thread storage class? ll

The loop spanning lines 22-38 carries out the per-
formance test. Lines 23-26 acquire the lock, lines 27-
29 hold the lock for the specified duration (and the
barrier () directive prevents the compiler from op-
timizing the loop out of existence), lines 30-33 release
the lock, and lines 34-36 wait for the specified duration
before re-acquiring the lock. Line 37 counts this lock
acquisition.

Line 39 moves the lock-acquisition count to this
thread’s element of the readcounts[] array, and
line 40 returns, terminating this thread.

Figure 3.10 shows the results of running this test on
a 64-core Power-5 system with two hardware threads
per core for a total of 128 software-visible CPUs. The
thinktime parameter was zero for all these tests, and
the holdt ime parameter set to values ranging from one
thousand (“1K” on the graph) to 100 million (“100M” on

3.3. ATOMIC OPERATIONS

14 ; ;

1 febelebateteabet A - - e - —
e *H!E'E.* % ideal
Ny e

o9 [F z Mﬁﬁ i

‘ %
0 EE,; B e
S T
o 0811 4 S g i
2 Y N S,
A i
5 Ty T e, T, 100M
S ekt %i’%.s %%%E 4
5 } | 1 5 10M
5 051 | ", -
® IR o,
® 04 T ek -
= l{ | %\ M
(3 | I £ +H‘F+H_+
03k}
,\, \ ™
02T Tk T .

\
5 %% o
“r +MK |
+
0 1K} e LT .

Number of CPUs (Threads)

Figure 3.10: Reader-Writer Lock Scalability

the graph). The actual value plotted is:

Ly

NL 3.1)

where N is the number of threads, Ly is the number of
lock acquisitions by N threads, and L; is the number of
lock acquisitions by a single thread. Given ideal hardware
and software scalability, this value will always be 1.0.

As can be seen in the figure, reader-writer locking
scalability is decidedly non-ideal, especially for smaller
sizes of critical sections. To see why read-acquisition
can be so slow, consider that all the acquiring threads
must update the pthread_rwlock_t data structure.
Therefore, if all 128 executing threads attempt to read-
acquire the reader-writer lock concurrently, they must
update this underlying pthread_rwlock_t one at a
time. One lucky thread might do so almost immediately,
but the least-lucky thread must wait for all the other 127
threads to do their updates. This situation will only get
worse as you add CPUs.

Quick Quiz 3.18: Isn’t comparing against single-CPU
throughput a bit harsh?

Quick Quiz 3.19: But 1,000 instructions is not a par-
ticularly small size for a critical section. What do I do if
I need a much smaller critical section, for example, one
containing only a few tens of instructions? ll

Quick Quiz 3.20: In Figure 3.10, all of the traces other
than the 100M trace deviate gently from the ideal line. In

27

contrast, the 100M trace breaks sharply from the ideal
line at 64 CPUs. In addition, the spacing between the
100M trace and the 10M trace is much smaller than that
between the 10M trace and the 1M trace. Why does the
100M trace behave so much differently than the other
traces? M

Quick Quiz 3.21: Power-5 is several years old, and
new hardware should be faster. So why should anyone
worry about reader-writer locks being slow? Hl

Despite these limitations, reader-writer locking is quite
useful in many cases, for example when the readers must
do high-latency file or network I/O. There are alternatives,
some of which will be presented in Chapters 4 and 8.

3.3 Atomic Operations

Given that Figure 3.10 shows that the overhead of reader-
writer locking is most severe for the smallest critical sec-
tions, it would be nice to have some other way to protect
the tiniest of critical sections. One such way are atomic
operations. We have seen one atomic operations already,
in the form of the __sync_fetch_and_add () prim-
itive on line 18 of Figure 3.9. This primitive atomically
adds the value of its second argument to the value refer-
enced by its first argument, returning the old value (which
was ignored in this case). If a pair of threads concur-
rently execute ___sync_fetch_and_add () on the
same variable, the resulting value of the variable will
include the result of both additions.

The gcc compiler offers a number of additional atomic
operations, including __sync_fetch_and_sub (),
__sync_fetch_and_or (), __sync_fetch_
and_and (), __ sync_fetch_and_xor (), and
__sync_fetch_and_nand (), all of which return
the old value. If you instead need the new value, you
can instead use the _ sync_add_and_fetch(),
__sync_sub_and_fetch(), __sync_or_
and_fetch (), __sync_and_and_fetch(),
_ _sync_xor_and_fetch(),and _ sync_nand_
and_fetch () primitives.

Quick Quiz 3.22: Is it really necessary to have both
sets of primitives? Wl

The classic compare-and-swap operation is provided
by a pair of primitives, sync_bool_compare_
and_swap () and __sync_val_compare_and_
swap (). Both of these primitive atomically update a
location to a new value, but only if its prior value was
equal to the specified old value. The first variant returns 1
if the operation succeeded and 0 if it failed, for example,

28

if the prior value was not equal to the specified old value.
The second variant returns the prior value of the location,
which, if equal to the specified old value, indicates that
the operation succeeded. Either of the compare-and-swap
operation is “universal” in the sense that any atomic op-
eration on a single location can be implemented in terms
of compare-and-swap, though the earlier operations are
often more efficient where they apply. The compare-and-
swap operation is also capable of serving as the basis for
a wider set of atomic operations, though the more elabo-
rate of these often suffer from complexity, scalability, and
performance problems [Her90].

The __sync_synchronize () primitive issues a
“memory barrier”, which constrains both the compiler’s
and the CPU’s ability to reorder operations, as discussed
in Section 13.2. In some cases, it is sufficient to constrain
the compiler’s ability to reorder operations, while allow-
ing the CPU free rein, in which case the barrier ()
primitive may be used, as it in fact was on line 28 of
Figure 3.9. In some cases, it is only necessary to ensure
that the compiler avoids optimizing away a given memory
access, in which case the ACCESS_ONCE () primitive
may be used, as it was on line 17 of Figure 3.6. These last
two primitives are not provided directly by gcc, but may
be implemented straightforwardly as follows:

#define ACCESS_ONCE (x) (*(volatile typeof (x) *)&(x))
#define barrier() __asm__ _ volatile_ ("": : :"memory")

Quick Quiz 3.23: Given that these atomic operations
will often be able to generate single atomic instructions
that are directly supported by the underlying instruction
set, shouldn’t they be the fastest possible way to get things
done? M

3.4 Linux-Kernel Equivalents to
POSIX Operations

Unfortunately, threading operations, locking primitives,
and atomic operations were in reasonably wide use long
before the various standards committees got around to
them. As a result, there is considerable variation in how
these operations are supported. It is still quite common to
find these operations implemented in assembly language,
either for historical reasons or to obtain better perfor-
mance in specialized circumstances. For example, the
gcc ___sync_ family of primitives all provide memory-
ordering semantics, motivating many developers to create

CHAPTER 3. TOOLS OF THE TRADE

their own implementations for situations where the mem-
ory ordering semantics are not required.

Therefore, Table 3.1 on page 29 provides a rough map-
ping between the POSIX and gcc primitives to those used
in the Linux kernel. Exact mappings are not always avail-
able, for example, the Linux kernel has a wide variety of
locking primitives, while gcc has a number of atomic op-
erations that are not directly available in the Linux kernel.
Of course, on the one hand, user-level code does not need
the Linux kernel’s wide array of locking primitives, while
on the other hand, gcc’s atomic operations can be emu-
lated reasonably straightforwardly using cmpxchg () .

Quick Quiz 3.24: What happened to the Linux-kernel
equivalents to fork () and join ()? H

3.5 The Right Tool for the Job:
How to Choose?

As a rough rule of thumb, use the simplest tool that will
get the job done. If you can, simply program sequentially.
If that is insufficient, try using a shell script to mediate par-
allelism. If the resulting shell-script fork ()/exec ()
overhead (about 480 microseconds for a minimal C pro-
gram on an Intel Core Duo laptop) is too large, try using
the C-language fork () and wait () primitives. If the
overhead of these primitives (about 80 microseconds for
a minimal child process) is still too large, then you might
need to use the POSIX threading primitives, choosing the
appropriate locking and/or atomic-operation primitives. If
the overhead of the POSIX threading primitives (typically
sub-microsecond) is too great, then the primitives intro-
duced in Chapter 8 may be required. Always remember
that inter-process communication and message-passing
can be good alternatives to shared-memory multithreaded
execution.

Quick Quiz 3.25: Wouldn’t the shell normally use
vfork () rather than fork ()? W

Of course, the actual overheads will depend not only
on your hardware, but most critically on the manner in
which you use the primitives. Therefore, it is necessary
to make the right design choices as well as the correct
choice of individual primitives, as is discussed at length
in subsequent chapters.

3.5. THE RIGHT TOOL FOR THE JOB: HOW TO CHOOSE?

Category

| POSIX

Linux Kernel

Thread Management

pthread_t

struct task_struct

pthread_create ()

kthread_create

pthread_exit ()

kthread_should_stop () (rough)

pthread_join ()

kthread_stop () (rough)

poll (NULL, 0, 5)

schedule_timeout_interruptible ()

POSIX Locking pthread_mutex_t spinlock_t (rough)
struct mutex
PTHREAD_MUTEX_INITIALIZER DEFINE_SPINLOCK ()
DEFINE_MUTEX ()
pthread_mutex_lock () spin_lock () (and friends)
mutex_lock () (and friends)
pthread_mutex_unlock () spin_unlock () (and friends)
mutex_unlock ()
POSIX Reader-Writer pthread_rwlock_t rwlock_t (rough)
Locking struct rw_semaphore

PTHREAD_RWLOCK_INITIALIZER

DEF INE_RWLOCK ()
DECLARE_RWSEM ()

pthread_rwlock_rdlock ()

read_lock () (and friends)
down_read () (and friends)

pthread_rwlock_unlock ()

read_unlock () (and friends)
up_read ()

pthread_rwlock_wrlock ()

write_lock () (and friends)
down_write () (and friends)

pthread_rwlock_unlock ()

write_unlock () (and friends)
up_write ()

Atomic Operations

C Scalar Types

atomic_t
atomic64_t

_ _sync_fetch_and_add ()

atomic_add_return ()
atomic64_add_return ()

__sync_fetch_and_sub ()

atomic_sub_return ()
atomic64_sub_return ()

__sync_val_compare_and_swap ()| cmpxchg()
__sync_lock_test_and_set () xchg () (rough)
__sync_synchronize () smp_mb ()

Table 3.1: Mapping from POSIX to Linux-Kernel Primitives

29

30

CHAPTER 3. TOOLS OF THE TRADE

Chapter 4

Counting

Counting is perhaps the simplest and most natural thing
a computer can do. However, counting efficiently and
scalably on a large shared-memory multiprocessor can
be quite challenging. Furthermore, the simplicity of the
underlying concept of counting allows us to explore the
fundamental issues of concurrency without the distrac-
tions of elaborate data structures or complex synchroniza-
tion primitives. Counting therefore provides an excellent
introduction to parallel programming.

This chapter covers a number of special cases for which
there are simple, fast, and scalable counting algorithms.
But first, let us find out how much you already know about
concurrent counting.

Quick Quiz 4.1: Why on earth should efficient and
scalable counting be hard? After all, computers have
special hardware for the sole purpose of doing counting,
addition, subtraction, and lots more besides, don’t they???
]

Quick Quiz 4.2: Network-packet counting prob-
lem. Suppose that you need to collect statistics on the
number of networking packets (or total number of bytes)
transmitted and/or received. Packets might be transmitted
or received by any CPU on the system. Suppose further
that this large machine is capable of handling a million
packets per second, and that there is a systems-monitoring
package that reads out the count every five seconds. How
would you implement this statistical counter? ll

Quick Quiz 4.3: Approximate structure-allocation
limit problem. Suppose that you need to maintain a
count of the number of structures allocated in order to
fail any allocations once the number of structures in use
exceeds a limit (say, 10,000). Suppose further that these
structures are short-lived, that the limit is rarely exceeded,
and that a “sloppy” approximate limit is acceptable. l

Quick Quiz 4.4: Exact structure-allocation limit
problem. Suppose that you need to maintain a count

31

of the number of structures allocated in order to fail any
allocations once the number of structures in use exceeds
an exact limit (again, say 10,000). Suppose further that
these structures are short-lived, and that the limit is rarely
exceeded, that there is almost always at least one structure
in use, and suppose further still that it is necessary to know
exactly when this counter reaches zero, for example, in
order to free up some memory that is not required unless
there is at least one structure in use. H

Quick Quiz 4.5: Removable I/O device access-
count problem. Suppose that you need to maintain a
reference count on a heavily used removable mass-storage
device, so that you can tell the user when it is safe to re-
move the device. This device follows the usual removal
procedure where the user indicates a desire to remove the
device, and the system tells the user when it is safe to do
so.

The remainder of this chapter will develop answers
to these questions. Section 4.1 asks why counting on
multicore systems isn’t trivial, and Section 4.2 looks
into ways of solving the network-packet counting prob-
lem. Section 4.3 investigates the approximate structure-
allocation limit problem, while Section 4.4 takes on the
exact structure-allocation limit problem. Section 4.5 dis-
cusses how to use the various specialized parallel counters
introduced in the preceding sections. Finally, Section 4.6
concludes the chapter with performance measurements.

Sections 4.1 and 4.2 contain introductory material,
while the remaining sections are more appropriate for
advanced students.

32

4.1 Why Isn’t Concurrent Count-
ing Trivial?

Let’s start with something simple, for example, the
straightforward use of arithmetic shown in Figure 4.1
(count_nonatomic.c). Here, we have a counter on
line 1, we increment it on line 5, and we read out its value
on line 10. What could be simpler?

This approach has the additional advantage of being
blazingly fast if you are doing lots of reading and almost
no incrementing, and on small systems, the performance
is excellent.

There is just one large fly in the ointment: this ap-
proach can lose counts. On my dual-core laptop, a short
run invoked inc_count () 100,014,000 times, but the
final value of the counter was only 52,909,118. Although
approximate values do have their place in computing, ac-
curacies far greater than 50% are almost always necessary.

Quick Quiz 4.6: But doesn’t the ++ operator produce
an x86 add-to-memory instruction? And won’t the CPU
cache cause this to be atomic? l

Quick Quiz 4.7: The 8-figure accuracy on the number
of failures indicates that you really did test this. Why
would it be necessary to test such a trivial program, espe-
cially when the bug is easily seen by inspection? ll

The straightforward way to count accurately is to use
atomic operations, as shown in Figure 4.2 (count_
atomic.c). Line 1 defines an atomic variable, line 5
atomically increments it, and line 10 reads it out. Be-
cause this is atomic, it keeps perfect count. However, it is
slower: on a Intel Core Duo laptop, it is about six times
slower than non-atomic increment when a single thread
is incrementing, and more than fen times slower if two
threads are incrementing.'

! Interestingly enough, a pair of threads non-atomically incrementing
a counter will cause the counter to increase more quickly than a pair
of threads atomically incrementing the counter. Of course, if your only
goal is to make the counter increase quickly, an easier approach is to

long counter = 0;

void inc_count (void)
{
counter++;

}

long read_count (void)
{
return counter;

}

= O WwW-Jo U Bd WN

Figure 4.1: Just Count!

CHAPTER 4. COUNTING

1 atomic_t counter = ATOMIC_INIT (O0);
2
3 void inc_count (void)
4 {
5 atomic_inc (&counter) ;
6}
7
8 long read_count (void)
9 {
10 return atomic_read (&counter);
11 }
Figure 4.2: Just Count Atomically!
900 T T T T T T
2 800 | +
£
s 700 | F -
n 7
(o] i
c 600 [. -
© ;
5 s
= 500 |- . —
; F
e 400 - E// —
o 7
£ 300 [L,/ -
— 7
[@
o 200 | A .
2 /
= 100 | ¥ =
0 IRy R [| | I | Ry
1 2 3 4 5 6 7 8
Number of CPUs/Threads

Figure 4.3: Atomic Increment Scalability on Nehalem

This poor performance should not be a surprise, given
the discussion in Chapter 2, nor should it be a surprise
that the performance of atomic increment gets slower as
the number of CPUs and threads increase, as shown in
Figure 4.3. In this figure, the horizontal dashed line rest-
ing on the x axis is the ideal performance that would be
achieved by a perfectly scalable algorithm: with such an
algorithm, a given increment would incur the same over-
head that it would in a single-threaded program. Atomic
increment of a single global variable is clearly decidedly
non-ideal, and gets worse as you add CPUs.

Quick Quiz 4.8: Why doesn’t the dashed line on the

simply assign a large value to the counter. Nevertheless, there is likely to
be a role for algorithms that use carefully relaxed notions of correctness
in order to gain greater performance and scalability [And91, ACMS03,
Ungll].

count_nonatomic.c
count_atomic.c
count_atomic.c

4.2. STATISTICAL COUNTERS

s
‘e
“igh

Figure 4.5: Waiting to Count

x axis meet the diagonal line at x = 1?7 W

Quick Quiz 4.9: But atomic increment is still pretty
fast. And incrementing a single variable in a tight loop
sounds pretty unrealistic to me, after all, most of the
program’s execution should be devoted to actually doing
work, not accounting for the work it has done! Why
should I care about making this go faster? l

For another perspective on global atomic increment,
consider Figure 4.4. In order for each CPU to get a chance
to increment a given global variable, the cache line con-
taining that variable must circulate among all the CPUs,
as shown by the red arrows. Such circulation will take
significant time, resulting in the poor performance seen
in Figure 4.3, which might be thought of as shown in
Figure 4.5.

The following sections discuss high-performance

33

counting, which avoids the delays inherent in such circu-
lation.

Quick Quiz 4.10: But why can’t CPU designers sim-
ply ship the addition operation to the data, avoiding the
need to circulate the cache line containing the global vari-
able being incremented? ll

4.2 Statistical Counters

This section covers the common special case of statistical
counters, where the count is updated extremely frequently
and the value is read out rarely, if ever. These will be used
to solve the network-packet counting problem posed in
Quick Quiz 4.2.

4.2.1 Design

Statistical counting is typically handled by providing a
counter per thread (or CPU, when running in the kernel),
so that each thread updates its own counter. The aggregate
value of the counters is read out by simply summing up
all of the threads’ counters, relying on the commutative
and associative properties of addition. This is an example
of the Data Ownership pattern that will be introduced in
Section 5.3.4.

Quick Quiz 4.11: But doesn’t the fact that C’s “inte-
gers” are limited in size complicate things? H

4.2.2 Array-Based Implementation

One way to provide per-thread variables is to allocate
an array with one element per thread (presumably cache
aligned and padded to avoid false sharing).

Quick Quiz 4.12: An array??? But doesn’t that limit
the number of threads? ll

Such an array can be wrapped into per-thread primi-
tives, as shown in Figure 4.6 (count_stat.c). Line 1
defines an array containing a set of per-thread counters of
type 1ong named, creatively enough, counter.

Lines 3-6 show a function that increments the counters,
using the __get_thread_var () primitive to locate
the currently running thread’s element of the counter
array. Because this element is modified only by the corre-
sponding thread, non-atomic increment suffices.

Lines 8-16 show a function that reads out the aggregate
value of the counter, using the for_each_thread ()
primitive to iterate over the list of currently running
threads, and using the per_thread () primitive to

count_stat.c

DEFINE_PER_THREAD (long, counter);

1

2

3 void inc_count (void)

4 {

5 __get_thread_var (counter) ++;
6
7
8

}

long read_count (void)
9 {

10 int t;

11 long sum = 0;

13 for_each_thread(t)

14 sum += per_thread(counter, t);
15 return sum;

Figure 4.6: Array-Based Per-Thread Statistical Counters

cPUo CPU-t CPY2 cCPU3
Cache Cache Cache Cache
Interconnect Interconnect
~ =

Memory |<—=| System Interconnect |<—=| Memory

_ ™~

Z N
Interconnect Interconnect

ch ch ch ch

e« CelA CalA a2

Figure 4.7: Data Flow For Per-Thread Increment

fetch the specified thread’s counter. Because the hard-
ware can fetch and store a properly aligned 1ong atomi-
cally, and because gcc is kind enough to make use of this
capability, normal loads suffice, and no special atomic
instructions are required.

Quick Quiz 4.13: What other choice does gcc have,
anyway??? l

Quick Quiz 4.14: How does the per-thread counter
variable in Figure 4.6 get initialized? H

Quick Quiz 4.15: How is the code in Figure 4.6 sup-
posed to permit more than one counter? H

This approach scales linearly with increasing number
of updater threads invoking inc_count (). Asis shown
by the green arrows in Figure 4.7, the reason for this is
that each CPU can make rapid progress incrementing
its thread’s variable, without any expensive cross-system
communication. As such, this section solves the network-
packet counting problem presented at the beginning of

CHAPTER 4. COUNTING

this chapter.

Quick Quiz 4.16: The read operation takes time to
sum up the per-thread values, and during that time, the
counter could well be changing. This means that the
value returned by read_count () in Figure 4.6 will
not necessarily be exact. Assume that the counter is being
incremented at rate r counts per unit time, and that read__
count () ’s execution consumes A units of time. What is
the expected error in the return value? ll

However, this excellent update-side scalability comes at
great read-side expense for large numbers of threads. The
next section shows one way to reduce read-side expense
while still retaining the update-side scalability.

4.2.3 Eventually Consistent Implementa-
tion

One way to retain update-side scalability while greatly im-
proving read-side performance is to weaken consistency
requirements. The counting algorithm in the previous
section is guaranteed to return a value between the value
that an ideal counter would have taken on near the begin-
ning of read_count () ’s execution and that near the
end of read_count ()’s execution. Eventual consis-
tency [Vog09] provides a weaker guarantee: in absence of
calls to inc_count (), calls to read_count () will
eventually return an accurate count.

We exploit eventual consistency by maintaining a
global counter. However, updaters only manipulate their
per-thread counters. A separate thread is provided to
transfer counts from the per-thread counters to the global
counter. Readers simply access the value of the global
counter. If updaters are active, the value used by the read-
ers will be out of date, however, once updates cease, the
global counter will eventually converge on the true value—
hence this approach qualifies as eventually consistent.

The implementation is shown in Figure 4.8 (count__
stat_eventual.c). Lines 1-2 show the per-thread
variable and the global variable that track the counter’s
value, and line three shows st opflag which is used to
coordinate termination (for the case where we want to
terminate the program with an accurate counter value).
The inc_count () function shown on lines 5-8 is simi-
lar to its counterpart in Figure 4.6. The read_count ()
function shown on lines 10-13 simply returns the value of
the global_count variable.

However, the count_init () function on lines 34-
42 creates the eventual () thread shown on lines 15-
32, which cycles through all the threads, summing the

count_stat_eventual.c
count_stat_eventual.c

4.2. STATISTICAL COUNTERS

DEFINE_PER_THREAD (unsigned long, counter);
unsigned long global_count;
int stopflag;

void inc_count (void)
{

ACCESS_ONCE (__get_thread_var (counter)) ++;
}

W J o0 WN

10 unsigned long read_count (void)

11 |

12 return ACCESS_ONCE (global_count) ;
13 }

14

15 void xeventual (void xarg)

16 {

17 int t;

18 int sum;

19

20 while (stopflag < 3) {

21 sum = 0;

22 for_each_thread(t)

23 sum += ACCESS_ONCE (per_thread(counter, t));
24 ACCESS_ONCE (global_count) = sum;
25 poll (NULL, 0, 1);

26 if (stopflag) {

27 smp_mb () ;

28 stopflag++;

29 }

30 }

31 return NULL;

32}

33

34 void count_init (void)

35 {

36 thread_id_t tid;

37

38 if (pthread_create(&tid, NULL, eventual, NULL)) {
39 perror ("count_init:pthread_create");
40 exit (-1);

41 }

42 }

43

44 void count_cleanup (void)

45 {

46 stopflag = 1;

47 while (stopflag < 3)

48 poll (NULL, 0, 1);

49 smp_mb () ;

50 }

Figure 4.8: Array-Based Per-Thread Eventually Consis-
tent Counters

35

per-thread local counter and storing the sum to the
global_count variable. The eventual () thread
waits an arbitrarily chosen one millisecond between
passes. The count_cleanup () function on lines 44-
50 coordinates termination.

This approach gives extremely fast counter read-out
while still supporting linear counter-update performance.
However, this excellent read-side performance and update-
side scalability comes at the cost of the additional thread
running eventual ().

Quick Quiz 4.17: Why doesn’t inc_count () in
Figure 4.8 need to use atomic instructions? After all,
we now have multiple threads accessing the per-thread
counters! H

Quick Quiz 4.18: Won’t the single global thread in the
function eventual () of Figure 4.8 be just as severe a
bottleneck as a global lock would be? B

Quick Quiz 4.19: Won’t the estimate returned by
read_count () in Figure 4.8 become increasingly in-
accurate as the number of threads rises? Hl

Quick Quiz 4.20: Given that in the eventually-
consistent algorithm shown in Figure 4.8 both reads and
updates have extremely low overhead and are extremely
scalable, why would anyone bother with the implementa-
tion described in Section 4.2.2, given its costly read-side
code? l

4.2.4 Per-Thread-Variable-Based
mentation

Imple-

Fortunately, gcc provides an ___thread storage class
that provides per-thread storage. This can be used as
shown in Figure 4.9 (count_end. c) to implement a
statistical counter that not only scales, but that also incurs
little or no performance penalty to incrementers compared
to simple non-atomic increment.

Lines 1-4 define needed variables: counter is the per-
thread counter variable, the counterp [] atray allows
threads to access each others’ counters, finalcount
accumulates the total as individual threads exit, and
final_mutex coordinates between threads accumulat-
ing the total value of the counter and exiting threads.

Quick Quiz 4.21: Why do we need an explicit array
to find the other threads’ counters? Why doesn’t gcc pro-
vide a per_thread () interface, similar to the Linux
kernel’s per_cpu () primitive, to allow threads to more
easily access each others’ per-thread variables? ll

The inc_count () function used by updaters is quite
simple, as can be seen on lines 6-9.

count_end.c

36

W J oUW N

long __thread counter = 0;
long *counterp[NR_THREADS] = { NULL };
long finalcount = 0;

DEFINE_SPINLOCK (final_mutex) ;

void inc_count (void)
{
counter++;

}

long read_count (void)
{

int t;

long sum;

spin_lock (&final_mutex) ;
sum = finalcount;
for_each_thread(t)
if (counterp[t] != NULL)
sum += xcounterp[t];
spin_unlock (&final_mutex) ;
return sum;

}

void count_register_thread(void)
{
int idx = smp_thread_id();

spin_lock (&final_mutex) ;
counterp[idx] = &counter;
spin_unlock (&final_mutex) ;

}

void count_unregister_thread(int nthreadsexpected)
int idx = smp_thread_id();
spin_lock (&final_mutex);
finalcount += counter;

counterp[idx] = NULL;
spin_unlock (&final_mutex) ;

Figure 4.9: Per-Thread Statistical Counters

CHAPTER 4. COUNTING

The read_count () function used by readers is a
bit more complex. Line 16 acquires a lock to exclude
exiting threads, and line 21 releases it. Line 17 initializes
the sum to the count accumulated by those threads that
have already exited, and lines 18-20 sum the counts being
accumulated by threads currently running. Finally, line 22
returns the sum.

Quick Quiz 4.22: Doesn’t the check for NULL on
line 19 of Figure 4.9 add extra branch mispredictions?
Why not have a variable set permanently to zero, and
point unused counter-pointers to that variable rather than
setting them to NULL?

Quick Quiz 4.23: Why on earth do we need something
as heavyweight as a lock guarding the summation in the
function read_count () in Figure 4.9? B

Lines 25-32 show the count_register_
thread () function, which must be -called by
each thread before its first use of this counter. This
function simply sets up this thread’s element of the
counterp [] array to point to its per-thread counter
variable.

Quick Quiz 4.24: Why on earth do we need to ac-
quire the lock in count_register_thread() in
Figure 4.97 It is a single properly aligned machine-word
store to a location that no other thread is modifying, so it
should be atomic anyway, right? ll

Lines 34-42 show the count_unregister_
thread () function, which must be called prior to
exit by each thread that previously called count_
register_thread (). Line 38 acquires the lock,
and line 41 releases it, thus excluding any calls to
read_count () as well as other calls to count__
unregister_thread (). Line 39 adds this thread’s
counter to the global finalcount, and then line 40
NULLs out its counterp [] array entry. A subsequent
call to read_count () will see the exiting thread’s
count in the global finalcount, and will skip the exit-
ing thread when sequencing through the counterp[]
array, thus obtaining the correct total.

This approach gives updaters almost exactly the same
performance as a non-atomic add, and also scales linearly.
On the other hand, concurrent reads contend for a sin-
gle global lock, and therefore perform poorly and scale
abysmally. However, this is not a problem for statistical
counters, where incrementing happens often and readout
happens almost never. Of course, this approach is consid-
erably more complex than the array-based scheme, due to
the fact that a given thread’s per-thread variables vanish

4.3. APPROXIMATE LIMIT COUNTERS

when that thread exits.

Quick Quiz 4.25: Fine, but the Linux kernel doesn’t
have to acquire a lock when reading out the aggregate
value of per-CPU counters. So why should user-space
code need to do this??? Il

4.2.5 Discussion

These three implementations show that it is possible to
obtain uniprocessor performance for statistical counters,
despite running on a parallel machine.

Quick Quiz 4.26: What fundamental difference is
there between counting packets and counting the total
number of bytes in the packets, given that the packets
vary in size?

Quick Quiz 4.27: Given that the reader must sum all
the threads’ counters, this could take a long time given
large numbers of threads. Is there any way that the in-
crement operation can remain fast and scalable while
allowing readers to also enjoy reasonable performance
and scalability? H

Given what has been presented in this section, you
should now be able to answer the Quick Quiz about sta-
tistical counters for networking near the beginning of this
chapter.

4.3 Approximate Limit Counters

Another special case of counting involves limit-checking.
For example, as noted in the approximate structure-
allocation limit problem in Quick Quiz 4.3, suppose that
you need to maintain a count of the number of structures
allocated in order to fail any allocations once the number
of structures in use exceeds a limit, in this case, 10,000.
Suppose further that these structures are short-lived, that
this limit is rarely exceeded, and that this limit is approx-
imate in that it is OK to exceed it sometimes by some
bounded amount (see Section 4.4 if you instead need the
limit to be exact).

4.3.1 Design

One possible design for limit counters is to divide the
limit of 10,000 by the number of threads, and give each
thread a fixed pool of structures. For example, given 100
threads, each thread would manage its own pool of 100
structures. This approach is simple, and in some cases
works well, but it does not handle the common case where
a given structure is allocated by one thread and freed by

37

another [MS93]. On the one hand, if a given thread takes
credit for any structures it frees, then the thread doing
most of the allocating runs out of structures, while the
threads doing most of the freeing have lots of credits that
they cannot use. On the other hand, if freed structures
are credited to the CPU that allocated them, it will be
necessary for CPUs to manipulate each others’ counters,
which will require expensive atomic instructions or other
means of communicating between threads.?

In short, for many important workloads, we cannot
fully partition the counter. Given that partitioning the
counters was what brought the excellent update-side per-
formance for the three schemes discussed in Section 4.2,
this might be grounds for some pessimism. However, the
eventually consistent algorithm presented in Section 4.2.3
provides an interesting hint. Recall that this algorithm
kept two sets of books, a per-thread counter variable
for updaters and a global_count variable for read-
ers, with an eventual () thread that periodically up-
dated global_count to be eventually consistent with
the values of the per-thread counter. The per-thread
counter perfectly partitioned the counter value, while
global_count kept the full value.

For limit counters, we can use a variation on this theme,
in that we partially partition the counter. For example,
each of four threads could have a per-thread counter,
but each could also have a per-thread maximum value
(call it countermax).

But then what happens if a given thread needs to
increment its counter, but counter is equal to its
countermax? The trick here is to move half of that
thread’s counter value to a globalcount, then in-
crement counter. For example, if a given thread’s
counter and countermax variables were both equal
to 10, we do the following:

1. Acquire a global lock.
2. Add five to globalcount.

3. To balance out the addition, subtract five from this
thread’s counter.

4. Release the global lock.

5. Increment this thread’s counter, resulting in a
value of six.

2 That said, if each structure will always be freed by the same CPU
(or thread) that allocated it, then this simple partitioning approach works
extremely well.

38

unsigned long __thread counter = 0;

unsigned long __thread countermax = 0;
unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

oUW N

Figure 4.10: Simple Limit Counter Variables

Although this procedure still requires a global lock,
that lock need only be acquired once for every five in-
crement operations, greatly reducing that lock’s level
of contention. We can reduce this contention as low
as we wish by increasing the value of countermax.
However, the corresponding penalty for increasing
the value of countermax is reduced accuracy of
globalcount. To see this, note that on a four-CPU
system, if countermax is equal to ten, globalcount
will be in error by at most 40 counts. In contrast,
if countermax is increased to 100, globalcount
might be in error by as much as 400 counts.

This raises the question of just how much we care
about globalcount’s deviation from the aggregate
value of the counter, where this aggregate value is the
sum of globalcount and each thread’s counter vari-
able. The answer to this question depends on how far
the aggregate value is from the counter’s limit (call it
globalcountmax). The larger the difference between
these two values, the larger countermax can be with-
out risk of exceeding the globalcountmax limit. This
means that the value of a given thread’s countermax
variable can be set based on this difference. When far
from the limit, the countermax per-thread variables
are set to large values to optimize for performance and
scalability, while when close to the limit, these same vari-
ables are set to small values to minimize the error in the
checks against the globalcountmax limit.

This design is an example of parallel fastpath, which is
an important design pattern in which the common case ex-
ecutes with no expensive instructions and no interactions
between threads, but where occasional use is also made
of a more conservatively designed (and higher overhead)
global algorithm. This design pattern is covered in more
detail in Section 5.4.

CHAPTER 4. COUNTING

Figure 4.11: Simple Limit Counter Variable Relationships

4.3.2 Simple Limit Counter Implementa-
tion

Figure 4.10 shows both the per-thread and global vari-
ables used by this implementation. The per-thread
counter and countermax variables are the corre-
sponding thread’s local counter and the upper bound on
that counter, respectively. The globalcountmax vari-
able on line 3 contains the upper bound for the aggregate
counter, and the globalcount variable on line 4 is the
global counter. The sum of globalcount and each
thread’s counter gives the aggregate value of the over-
all counter. The globalreserve variable on line 5
is the sum of all of the per-thread countermax vari-
ables. The relationship among these variables is shown
by Figure 4.11:

1. The sum of globalcount and
globalreserve must be less than or equal
to globalcountmax.

2. The sum of all threads’ countermax values must
be less than or equal to globalreserve.

3. Each thread’s counter must be less than or equal
to that thread’s countermax.

4.3. APPROXIMATE LIMIT COUNTERS

1 int add_count (unsigned long delta)

2 {

3 if (countermax - counter >= delta) {
4 counter += delta;

5 return 1;

6 }

7 spin_lock (&gblcnt_mutex) ;

8 globalize_count () ;

9 if (globalcountmax -
10 globalcount - globalreserve < delta) {
11 spin_unlock (&gblcnt_mutex);
12 return 0;
13 }

14 globalcount += delta;
15 balance_count () ;
16 spin_unlock (&gblcnt_mutex) ;

17 return 1;

18 }

19

20 int sub_count (unsigned long delta)
21 {

22 if (counter >= delta) {

23 counter -= delta;

24 return 1;

25 }

26 spin_lock (&gblcnt_mutex) ;
27 globalize_count () ;
28 if (globalcount < delta) {

29 spin_unlock (&gblcnt_mutex) ;
30 return 0;

31 }

32 globalcount -= delta;

33 balance_count () ;
34 spin_unlock (&gblcnt_mutex) ;

35 return 1;

36 }

37

38 unsigned long read_count (void)
39 {

40 int t;

41 unsigned long sum;

42

43 spin_lock (&gblcnt_mutex) ;
44 sum = globalcount;

45 for_each_thread(t)

46 if (counterp([t] != NULL)
47 sum += xcounterp[t];

48 spin_unlock (&gblcnt_mutex) ;
49 return sum;

50 }

Figure 4.12: Simple Limit Counter Add, Subtract, and
Read

Each element of the counterp[] array references
the corresponding thread’s counter variable, and, fi-
nally, the gblcnt_mutex spinlock guards all of the
global variables, in other words, no thread is permitted to
access or modify any of the global variables unless it has
acquired gblcnt_mutex.

Figure 4.12 shows the add_count (), sub_
count (), and read_count () functions (count_
lim.c).

Quick Quiz 4.28: Why does Figure 4.12 provide
add_count () and sub_count () instead of the

39

inc_count () and dec_count () interfaces show in
Section 4.27 W

Lines 1-18 show add_count (), which adds the spec-
ified value delta to the counter. Line 3 checks to see if
there is room for delta on this thread’s counter, and,
if so, line 4 adds it and line 6 returns success. This is the
add_counter () fastpath, and it does no atomic oper-
ations, references only per-thread variables, and should
not incur any cache misses.

Quick Quiz 4.29: What is with the strange form of the
condition on line 3 of Figure 4.12? Why not the following
more intuitive form of the fastpath?

if (counter + delta <= countermax) {
counter += delta;
return 1;

o U1 W

If the test on line 3 fails, we must access global vari-
ables, and thus must acquire gblcnt_mutex on line 7,
which we release on line 11 in the failure case or on
line 16 in the success case. Line 8 invokes globalize_
count (), shown in Figure 4.13, which clears the thread-
local variables, adjusting the global variables as needed,
thus simplifying global processing. (But don’t take my
word for it, try coding it yourself!) Lines 9 and 10 check
to see if addition of delta can be accommodated, with
the meaning of the expression preceding the less-than
sign shown in Figure 4.11 as the difference in height of
the two red bars. If the addition of delta cannot be
accommodated, then line 11 (as noted earlier) releases
gblcnt_mutex and line 12 returns indicating failure.

Otherwise, we take the slowpath. Line 14 adds delta
to globalcount, and then line 15 invokes balance_
count () (shown in Figure 4.13) in order to update
both the global and the per-thread variables. This call
to balance_count () will usually set this thread’s
countermax to re-enable the fastpath. Line 16 then
releases gblcnt_mutex (again, as noted earlier), and,
finally, line 17 returns indicating success.

Quick Quiz 4.30: Why does globalize_count ()
zero the per-thread variables, only to later call balance_
count () to refill them in Figure 4.12? Why not just
leave the per-thread variables non-zero? B

Lines 20-36 show sub_count (), which subtracts
the specified delta from the counter. Line 22 checks to
see if the per-thread counter can accommodate this sub-
traction, and, if so, line 23 does the subtraction and line 24
returns success. These lines form sub_count () ’s fast-
path, and, as with add_count (), this fastpath executes

count_lim.c
count_lim.c

40

no costly operations.

If the fastpath cannot accommodate subtraction of
delta, execution proceeds to the slowpath on lines 26-
35. Because the slowpath must access global state, line 26
acquires gblcnt_mutex, which is released either by
line 29 (in case of failure) or by line 34 (in case of suc-
cess). Line 27 invokes globalize_count (), shown
in Figure 4.13, which again clears the thread-local vari-
ables, adjusting the global variables as needed. Line 28
checks to see if the counter can accommodate subtracting
delta, and, if not, line 29 releases gblcnt_mutex
(as noted earlier) and line 30 returns failure.

Quick Quiz 4.31: Given that globalreserve
counted against us in add_count (), why doesn’t it
count for us in sub_count () in Figure 4.127 A

Quick Quiz 4.32: Suppose that one thread invokes
add_count () shown in Figure 4.12, and then another
thread invokes sub_count (). Won’t sub_count ()
return failure even though the value of the counter is non-
zero? A

If, on the other hand, line 28 finds that the counter
can accommodate subtracting delta, we complete the
slowpath. Line 32 does the subtraction and then line 33
invokes balance_count () (shown in Figure 4.13)
in order to update both global and per-thread variables
(hopefully re-enabling the fastpath). Then line 34 releases
gblcnt_mutex, and line 35 returns success.

Quick Quiz 4.33: Why have both add_count ()
and sub_count () in Figure 4.12? Why not simply
pass a negative number to add_count () ? l

Lines 38-50 show read_count (), which returns the
aggregate value of the counter. It acquires gblcnt_
mutex on line 43 and releases it on line 48, exclud-
ing global operations from add_count () and sub_
count (), and, as we will see, also excluding thread
creation and exit. Line 44 initializes local variable sum
to the value of globalcount, and then the loop span-
ning lines 45-47 sums the per-thread counter variables.
Line 49 then returns the sum.

Figure 4.13 shows a number of utility functions used
by the add_count (), sub_count (), and read_
count () primitives shown in Figure 4.12.

Lines 1-7 show globalize_count (), which ze-
ros the current thread’s per-thread counters, adjusting
the global variables appropriately. It is important to
note that this function does not change the aggregate
value of the counter, but instead changes how the
counter’s current value is represented. Line 3 adds
the thread’s counter variable to globalcount, and

CHAPTER 4. COUNTING

static void globalize_count (void)
{

globalcount += counter;
counter = 0;

globalreserve —= countermax;
countermax = 0;

9 static void balance_count (void)

countermax = globalcountmax -

globalcount - globalreserve;
countermax /= num_online_threads();

globalreserve += countermax;

counter = countermax / 2;

if (counter > globalcount)
counter = globalcount;

globalcount -= counter;

21 void count_register_thread(void)

22 {

30 void count_unregister_thread(int nthreadsexpected)

Figure 4.13: Simple Limit Counter Utility Functions

int idx = smp_thread_id();

spin_lock (&gblcnt_mutex) ;
counterp[idx] = &counter;
spin_unlock (&gblcnt_mutex) ;

int idx = smp_thread_id();

spin_lock (&gblcnt_mutex) ;
globalize_count () ;
counterp[idx] = NULL;
spin_unlock (&gblcnt_mutex) ;

4.3. APPROXIMATE LIMIT COUNTERS

line 4 zeroes counter. Similarly, line 5 subtracts the
per-thread countermax from globalreserve, and
line 6 zeroes countermax. It is helpful to refer to Fig-
ure 4.11 when reading both this function and balance__
count (), which is next.

Lines 9-19 show balance_count (), which is
roughly speaking the inverse of globalize_count ().
This function’s job is to set the current thread’s
countermax variable to the largest value that avoids
the risk of the counter exceeding the globalcountmax
limit. Changing the current thread’s countermax vari-
able of course requires corresponding adjustments to
counter, globalcount and globalreserve, as
can be seen by referring back to Figure 4.11. By do-
ing this, balance_count () maximizes use of add_
count ()’s and sub_count ()’s low-overhead fast-
paths. As with globalize_count (), balance_
count () is not permitted to change the aggregate value
of the counter.

Lines 11-13 compute this thread’s share of that por-
tion of globalcountmax that is not already cov-
ered by either globalcount or globalreserve,
and assign the computed quantity to this thread’s
countermax. Line 14 makes the corresponding ad-
justment to globalreserve. Line 15 sets this
thread’s counter to the middle of the range from
zero to countermax. Line 16 checks to see whether
globalcount can in fact accommodate this value of
counter, and, if not, line 17 decreases counter ac-
cordingly. Finally, in either case, line 18 makes the corre-
sponding adjustment to globalcount.

Quick Quiz 4.34: Why set counter to
countermax / 2 in line 15 of Figure 4.137?

Wouldn'’t it be simpler to just take countermax counts?
]

It is helpful to look at a schematic depicting how the
relationship of the counters changes with the execution
of first globalize_count () and then balance_
count, as shown in Figure 4.14. Time advances from
left to right, with the leftmost configuration roughly that
of Figure 4.11. The center configuration shows the re-
lationship of these same counters after globalize_
count () is executed by thread 0. As can be seen
from the figure, thread 0’s counter (“c 0” in the fig-
ure) is added to globalcount, while the value of
globalreserve is reduced by this same amount. Both
thread 0’s counter and its countermax (“cm 0” in
the figure) are reduced to zero. The other three threads’
counters are unchanged. Note that this change did

41

not affect the overall value of the counter, as indicated
by the bottommost dotted line connecting the leftmost
and center configurations. In other words, the sum of
globalcount and the four threads’ counter vari-
ables is the same in both configurations. Similarly, this
change did not affect the sum of globalcount and
globalreserve, as indicated by the upper dotted line.

The rightmost configuration shows the relationship of
these counters after balance_count () is executed,
again by thread 0. One-quarter of the remaining count, de-
noted by the vertical line extending up from all three
configurations, is added to thread 0’s countermax
and half of that to thread 0’s counter. The amount
added to thread 0’s counter is also subtracted from
globalcount in order to avoid changing the over-
all value of the counter (which is again the sum of
globalcount and the three threads’ counter vari-
ables), again as indicated by the lowermost of the two
dotted lines connecting the center and rightmost configu-
rations. The globalreserve variable is also adjusted
so that this variable remains equal to the sum of the four
threads’ countermax variables. Because thread 0’s
counter is less than its countermax, thread O can
once again increment the counter locally.

Quick Quiz 4.35: In Figure 4.14, even though a quar-
ter of the remaining count up to the limit is assigned to
thread O, only an eighth of the remaining count is con-
sumed, as indicated by the uppermost dotted line connect-
ing the center and the rightmost configurations. Why is
that?

Lines 21-28 show count_register_thread(),
which sets up state for newly created threads. This func-
tion simply installs a pointer to the newly created thread’s
counter variable into the corresponding entry of the
counterp[] array under the protection of gblcnt_
mutex.

Finally, lines 30-38 show count_unregister_
thread (), which tears down state for a soon-to-be-
exiting thread. Line 34 acquires gblcnt_mutex and
line 37 releases it. Line 35 invokes globalize_
count () to clear out this thread’s counter state, and
line 36 clears this thread’s entry in the counterp[]
array.

4.3.3 Simple Limit Counter Discussion

This type of counter is quite fast when aggregate val-
ues are near zero, with some overhead due to the com-
parison and branch in both add_count () ’s and sub__

42

globalize_count()

CHAPTER 4. COUNTING

balance_count()

Figure 4.14: Schematic of Globalization and Balancing

count () ’s fastpaths. However, the use of a per-thread
countermax reserve means that add_count () can
fail even when the aggregate value of the counter is
nowhere near globalcountmax. Similarly, sub_
count () can fail even when the aggregate value of the
counter is nowhere near zero.

In many cases, this is unacceptable. Even if the
globalcountmax is intended to be an approximate
limit, there is usually a limit to exactly how much approx-
imation can be tolerated. One way to limit the degree of
approximation is to impose an upper limit on the value
of the per-thread countermax instances. This task is
undertaken in the next section.

4.3.4 Approximate Limit Counter Imple-
mentation

Because this implementation (count_1lim_app.c)is
quite similar to that in the previous section (Figures 4.10,
4.12, and 4.13), only the changes are shown here. Fig-
ure 4.15 is identical to Figure 4.10, with the addition of
MAX_COUNTERMAX, which sets the maximum permissi-
ble value of the per-thread countermax variable.
Similarly, Figure 4.16 is identical to the balance_

unsigned long ___thread counter = 0;

unsigned long __thread countermax = 0;

unsigned long globalcountmax = 10000;

unsigned long globalcount = 0;

unsigned long globalreserve = 0;

unsigned long *counterp[NR_THREADS] = { NULL };
DEFINE_SPINLOCK (gblcnt_mutex) ;

#define MAX_COUNTERMAX 100

O J oUW

Figure 4.15: Approximate Limit Counter Variables

1 static void balance_count (void)
2
3 countermax = globalcountmax -
4 globalcount - globalreserve;
5 countermax /= num_online_threads();
6 if (countermax > MAX_COUNTERMAX)
7 countermax = MAX_COUNTERMAX;
8 globalreserve += countermax;
9 counter = countermax / 2;
10 if (counter > globalcount)
11 counter = globalcount;
12 globalcount —-= counter;
13}

Figure 4.16: Approximate Limit Counter Balancing

count_lim_app.c

4.4. EXACT LIMIT COUNTERS

count () function in Figure 4.13, with the addition of
lines 6 and 7, which enforce the MAX_COUNTERMAX
limit on the per-thread countermax variable.

4.3.5 Approximate Limit Counter Discus-
sion

These changes greatly reduce the limit inaccuracy seen
in the previous version, but present another problem:
any given value of MAX COUNTERMAX will cause a
workload-dependent fraction of accesses to fall off the
fastpath. As the number of threads increase, non-fastpath
execution will become both a performance and a scala-
bility problem. However, we will defer this problem and
turn instead to counters with exact limits.

4.4 Exact Limit Counters

To solve the exact structure-allocation limit problem noted
in Quick Quiz 4.4, we need a limit counter that can tell
exactly when its limits are exceeded. One way of imple-
menting such a limit counter is to cause threads that have
reserved counts to give them up. One way to do this is to
use atomic instructions. Of course, atomic instructions
will slow down the fastpath, but on the other hand, it
would be silly not to at least give them a try.

4.4.1 Atomic Limit Counter Implementa-
tion

Unfortunately, if one thread is to safely remove counts
from another thread, both threads will need to atomically
manipulate that thread’s counter and countermax
variables. The usual way to do this is to combine these
two variables into a single variable, for example, given
a 32-bit variable, using the high-order 16 bits to repre-
sent counter and the low-order 16 bits to represent
countermax.

Quick Quiz 4.36: Why is it necessary to atomically
manipulate the thread’s counter and countermax
variables as a unit? Wouldn’t it be good enough to atomi-
cally manipulate them individually? B

The variables and access functions for a simple atomic
limit counter are shown in Figure 4.17 (count_lim_
atomic.c). The counter and countermax vari-
ables in earlier algorithms are combined into the single
variable ct randmax shown on line 1, with counter in
the upper half and countermax in the lower half. This

43

1 atomic_t __thread ctrandmax = ATOMIC_INIT (0);
2 unsigned long globalcountmax = 10000;

3 unsigned long globalcount = 0;

4 unsigned long globalreserve = 0;

5 atomic_t xcounterp[NR_THREADS] = { NULL };

6 DEFINE_SPINLOCK (gblcnt_mutex) ;

7 #define CM_BITS (sizeof (atomic_t) * 4)

8 #define MAX_COUNTERMAX ((1 << CM_BITS) - 1)

10 static void
11 split_ctrandmax_int (int cami, int %c, int =*cm)
12 {

13 *c = (cami >> CM_BITS) & MAX_COUNTERMAX;
14 *cm = cami & MAX_COUNTERMAX;

15 }

16

17 static void

18 split_ctrandmax (atomic_t *cam, int =old,
19 int *c, int =*cm)

20 {

21 unsigned int cami = atomic_read (cam) ;

23 *old = cami;
24 split_ctrandmax_int (cami, c, cm);
25 }

27 static int merge_ctrandmax (int c, int cm)
28 {
29 unsigned int cami;

30

31 cami = (c << CM_BITS) | cm;
32 return ((int)cami);

33}

Figure 4.17: Atomic Limit Counter Variables and Access
Functions

count_lim_atomic.c
count_lim_atomic.c

44

variable is of type at omic_t, which has an underlying
representation of int.

Lines 2-6 show the
globalcountmax,

definitions for
globalcount,
globalreserve, counterp, and gblcnt_mutex,
all of which take on roles similar to their counterparts in
Figure 4.15. Line 7 defines CM_BITS, which gives the
number of bits in each half of ct randmax, and line 8
defines MAX_COUNTERMAX, which gives the maximum
value that may be held in either half of ct randmax.

Quick Quiz 4.37: In what way does line 7 of Fig-
ure 4.17 violate the C standard? ll

Lines 10-15 show the split_ctrandmax_int ()
function, which, when given the underlying int from
the atomic_t ctrandmax variable, splits it into
its counter (c) and countermax (cm) components.
Line 13 isolates the most-significant half of this int,
placing the result as specified by argument c, and line 14
isolates the least-significant half of this int, placing the
result as specified by argument cm.

Lines 17-25 show the split_ctrandmax () func-
tion, which picks up the underlying int from the spec-
ified variable on line 21, stores it as specified by the
old argument on line 23, and then invokes split_
ctrandmax_int () to splitit on line 24.

Quick Quiz 4.38: Given that there is only one
ctrandmax variable, why bother passing in a pointer to
it on line 18 of Figure 4.177 W

Lines 27-33 show the merge_ctrandmax () func-
tion, which can be thought of as the inverse of split_
ctrandmax (). Line 31 merges the counter and
countermax values passed in ¢ and cm, respectively,
and returns the result.

Quick Quiz 4.39: Why does merge_ctrandmax ()
in Figure 4.17 return an int rather than storing directly
into an atomic_t? Ml

Figure 4.18 shows the add_count (), sub_
count (), and read_count () functions.

Lines 1-32 show add_count (), whose fastpath
spans lines 8-15, with the remainder of the function being
the slowpath. Lines 8-14 of the fastpath form a compare-
and-swap (CAS) loop, with the at omic_cmpxchg ()
primitives on lines 13-14 performing the actual CAS.
Line 9 splits the current thread’s ct randmax variable
into its counter (in ¢) and countermax (in cm) com-
ponents, while placing the underlying int into old.
Line 10 checks whether the amount de 1t a can be accom-
modated locally (taking care to avoid integer overflow),
and if not, line 11 transfers to the slowpath. Otherwise,

CHAPTER 4. COUNTING

1 int add_count (unsigned long delta)

2 A

3 int c;

4 int cm;

5 int old;

6 int new;

7

8 do {

9 split_ctrandmax (&ctrandmax, &old, &c, &cm);
10 if (delta > MAX_COUNTERMAX || c + delta > cm)
11 goto slowpath;

12 new = merge_ctrandmax(c + delta, cm);

13 } while (atomic_cmpxchg(&ctrandmax,

14 old, new) != old);
15 return 1;

16 slowpath:

17 spin_lock (&gblcnt_mutex) ;

18 globalize_count () ;

19 if (globalcountmax - globalcount -

20 globalreserve < delta) {

21 flush_local_count ();

22 if (globalcountmax - globalcount -
23 globalreserve < delta) {

24 spin_unlock (&gblcnt_mutex) ;

25 return 0;

26 }

217 }

28 globalcount += delta;
29 balance_count () ;
30 spin_unlock (&gblcnt_mutex) ;

31 return 1;

32}

33

34 int sub_count (unsigned long delta)

35 {

36 int c;

37 int cm;

38 int old;

39 int new;

40

41 do {

42 split_ctrandmax (&ctrandmax, &old, &c, &cm);
43 if (delta > c)

44 goto slowpath;

45 new = merge_ctrandmax(c - delta, cm);

46 } while (atomic_cmpxchg (&ctrandmax,

47 old, new) != old);
48 return 1;

49 slowpath:

50 spin_lock (&gblcnt_mutex) ;
51 globalize_count () ;

52 if (globalcount < delta) {

53 flush_local_count ();

54 if (globalcount < delta) {

55 spin_unlock (&gblcnt_mutex) ;
56 return 0;

57 }

58 }

59 globalcount —-= delta;

60 balance_count () ;
61 spin_unlock (&gblcnt_mutex) ;
62 return 1;

Figure 4.18: Atomic Limit Counter Add and Subtract

4.4. EXACT LIMIT COUNTERS

line 11 combines an updated counter value with the
original countermax value into new. The atomic_
cmpxchg () primitive on lines 13-14 then atomically
compares this thread’s ct randmax variable to o1d, up-
dating its value to new if the comparison succeeds. If the
comparison succeeds, line 15 returns success, otherwise,
execution continues in the loop at line 9.

Quick Quiz 4.40: Yecch! Why the ugly goto on
line 11 of Figure 4.18? Haven’t you heard of the break
statement??? M

Quick Quiz 4.41: Why would the atomic_
cmpxchg () primitive at lines 13-14 of Figure 4.18 ever
fail? After all, we picked up its old value on line 9 and
have not changed it!

Lines 16-31 of Figure 4.18 show add_count ()’s
slowpath, which is protected by gblcnt_mutex, which
is acquired on line 17 and released on lines 24 and 30.
Line 18 invokes globalize_count (), which moves
this thread’s state to the global counters. Lines 19-20
check whether the delta value can be accommodated
by the current global state, and, if not, line 21 invokes
flush_local_count () to flush all threads’ local
state to the global counters, and then lines 22-23 recheck
whether delta can be accommodated. If, after all that,
the addition of delta still cannot be accommodated,
then line 24 releases gblcnt_mutex (as noted earlier),
and then line 25 returns failure.

Otherwise, line 28 adds delta to the global counter,
line 29 spreads counts to the local state if appropriate,
line 30 releases gblcnt_mutex (again, as noted ear-
lier), and finally, line 31 returns success.

Lines 34-63 of Figure 4.18 show sub_count (),
which is structured similarly to add_count (), having
a fastpath on lines 41-48 and a slowpath on lines 49-62. A
line-by-line analysis of this function is left as an exercise
to the reader.

Figure 4.19 shows read_count (). Line 9 acquires
gblcnt_mutex and line 16 releases it. Line 10 initial-
izes local variable sum to the value of globalcount,
and the loop spanning lines 11-15 adds the per-thread
counters to this sum, isolating each per-thread counter
using split_ctrandmax on line 13. Finally, line 17
returns the sum.

Figures 4.20 and 4.21 shows the utility functions
globalize_count (), flush_local_count (),
balance_count (), count_register_
thread (), and count_unregister_thread().
The code for globalize_count () is shown on
lines 1-12, of Figure 4.20 and is similar to that of previous

unsigned long read_count (void)
{

int c;

int cm;

int old;

int t;

unsigned long sum;

spin_lock (&gblcnt_mutex) ;
sum = globalcount;
for_each_thread(t)
if (counterp[t] != NULL) {
split_ctrandmax (counterp[t],
sum += c;
}
spin_unlock (&gblcnt_mutex) ;
return sum;

&old, &c,

Figure 4.19: Atomic Limit Counter Read

static void globalize_count (void)
{

int c;

int cm;

int old;

split_ctrandmax (&ctrandmax,
globalcount += c;
globalreserve -= cm;

old = merge_ctrandmax (0, 0);
atomic_set (&ctrandmax, old);

}

static void flush_local_count (void)
{

int c;

int cm;

int old;

int t;

int zero;

if (globalreserve == 0)
return;
zero = merge_ctrandmax (0, 0);
for_each_thread (t)
if (counterp[t] != NULL) {
old = atomic_xchg(counterp[t], =zero);
split_ctrandmax_int (old, &c, &cm);
globalcount += c;
globalreserve -= cm;

&old, &c, &cm);

45

&cm) ;

Figure 4.20: Atomic Limit Counter Utility Functions 1

46

1 static void balance_count (void)
2 {

3 int c;

4 int cm;

5 int old;

6 unsigned long limit;

7

8 limit = globalcountmax - globalcount -
9 globalreserve;
10 limit /= num_online_threads();
11 if (limit > MAX_COUNTERMAX)
12 cm = MAX_COUNTERMAX;
13 else
14 cm = limit;
15 globalreserve += cm;

16 c =ocm / 2;
17 if (c > globalcount)

18 c = globalcount;

19 globalcount -= c;

20 old = merge_ctrandmax(c, cm);
21 atomic_set (&ctrandmax, old);
22}

23

24 void count_register_thread(void)
25 {

26 int idx = smp_thread_id();

27

28 spin_lock (&gblcnt_mutex) ;

29 counterp[idx] = &ctrandmax;
30 spin_unlock (&gblcnt_mutex) ;
31 }

32

33 void count_unregister_thread(int nthreadsexpected)
34 |
35 int idx = smp_thread_id();

37 spin_lock (&gblcnt_mutex) ;
38 globalize_count () ;

39 counterp[idx] = NULL;

40 spin_unlock (&gblcnt_mutex) ;

Figure 4.21: Atomic Limit Counter Utility Functions 2

CHAPTER 4. COUNTING

algorithms, with the addition of line 7, which is now
required to split out counter and countermax from
ctrandmax.

The code for flush_local_count (), which
moves all threads’ local counter state to the global counter,
is shown on lines 14-32. Line 22 checks to see if the value
of globalreserve permits any per-thread counts, and,
if not, line 23 returns. Otherwise, line 24 initializes lo-
cal variable zero to a combined zeroed counter and
countermax. The loop spanning lines 25-31 sequences
through each thread. Line 26 checks to see if the current
thread has counter state, and, if so, lines 27-30 move that
state to the global counters. Line 27 atomically fetches the
current thread’s state while replacing it with zero. Line 28
splits this state into its counter (in local variable c)
and countermax (in local variable cm) components.
Line 29 adds this thread’s counter to globalcount,
while line 30 subtracts this thread’s countermax from
globalreserve.

Quick Quiz 4.42: What stops a thread from sim-
ply refilling its ct randmax variable immediately after
flush_local_count () on line 14 of Figure 4.20
empties it? H

Quick Quiz 4.43: What prevents concurrent execution
of the fastpath of either atomic_add () or atomic_
sub () from interfering with the ct randmax variable
while flush_local_count () is accessing it on line
27 of Figure 4.20 empties it? W

Lines 1-22 on Figure 4.21 show the code for
balance_count (), which refills the calling thread’s
local ct randmax variable. This function is quite similar
to that of the preceding algorithms, with changes required
to handle the merged ctrandmax variable. Detailed
analysis of the code is left as an exercise for the reader,
as it is with the count_register_thread () func-
tion starting on line 24 and the count_unregister_
thread () function starting on line 33.

Quick Quiz 4.44: Given that the atomic_set ()
primitive does a simple store to the specified atomic_t,
how can line 21 of balance_count () in Figure 4.21
work correctly in face of concurrent flush_local_
count () updates to this variable? B

The next section qualitatively evaluates this design.

4.4.2 Atomic Limit Counter Discussion

This is the first implementation that actually allows the
counter to be run all the way to either of its limits, but it
does so at the expense of adding atomic operations to the

4.4. EXACT LIMIT COUNTERS

Figure 4.22: Signal-Theft State Machine

fastpaths, which slow down the fastpaths significantly on
some systems. Although some workloads might tolerate
this slowdown, it is worthwhile looking for algorithms
with better read-side performance. One such algorithm
uses a signal handler to steal counts from other threads.
Because signal handlers run in the context of the signaled
thread, atomic operations are not necessary, as shown in
the next section.

Quick Quiz 4.45: But signal handlers can be migrated
to some other CPU while running. Doesn’t this possibility
require that atomic instructions and memory barriers are
required to reliably communicate between a thread and a
signal handler that interrupts that thread? ll

4.4.3 Signal-Theft Limit Counter Design

Even though per-thread state will now be manipulated
only by the corresponding thread, there will still need to
be synchronization with the signal handlers. This syn-
chronization is provided by the state machine shown in
Figure 4.22 The state machine starts out in the IDLE
state, and when add__count () or sub_count () find
that the combination of the local thread’s count and the
global count cannot accommodate the request, the cor-
responding slowpath sets each thread’s theft state to
REQ (unless that thread has no count, in which case it
transitions directly to READY). Only the slowpath, which
holds the gblcnt_mutex lock, is permitted to transi-

47
1 #define THEFT_IDLE O
2 #define THEFT_REQ 1
3 #define THEFT_ACK 2
4 #define THEFT_READY 3
5
6 int __thread theft = THEFT_IDLE;
7 int __thread counting = 0;
8 unsigned long __thread counter = 0;
9 unsigned long __thread countermax = 0;
10 unsigned long globalcountmax = 10000;
11 unsigned long globalcount = 0;
12 unsigned long globalreserve = 0;
13 unsigned long *counterp[NR_THREADS] = { NULL };
14 unsigned long *countermaxp[NR_THREADS] = { NULL };
15 int *theftp[NR_THREADS] = { NULL };

16 DEFINE_SPINLOCK (gblcnt_mutex) ;
17 #define MAX_COUNTERMAX 100

Figure 4.23: Signal-Theft Limit Counter Data

tion from the IDLE state, as indicated by the green color.
The slowpath then sends a signal to each thread, and the
corresponding signal handler checks the corresponding
thread’s theft and count ing variables. If the theft
state is not REQ, then the signal handler is not permitted
to change the state, and therefore simply returns. Other-
wise, if the count ing variable is set, indicating that the
current thread’s fastpath is in progress, the signal handler
sets the theft state to ACK, otherwise to READY.

If the the ft state is ACK, only the fastpath is permit-
ted to change the theft state, as indicated by the blue
color. When the fastpath completes, it sets the theft
state to READY.

Once the slowpath sees a thread’s theft state is
READY, the slowpath is permitted to steal that thread’s
count. The slowpath then sets that thread’s theft state
to IDLE.

Quick Quiz 4.46: In Figure 4.22, why is the REQ
theft state colored red? M

Quick Quiz 4.47: In Figure 4.22, what is the point
of having separate REQ and ACK theft states? Why
not simplify the state machine by collapsing them into
a single REQACK state? Then whichever of the signal
handler or the fastpath gets there first could set the state
to READY. H

4.4.4 Signal-Theft Limit Counter Imple-
mentation

Figure 4.23 (count_1lim_sig.c) shows the data struc-
tures used by the signal-theft based counter implemen-
tation. Lines 1-7 define the states and values for the
per-thread theft state machine described in the preceding
section. Lines 8-17 are similar to earlier implementations,

count_lim_sig.c

48

with the addition of lines 14 and 15 to allow remote ac-
cess to a thread’s countermax and theft variables,
respectively.

Figure 4.24 shows the functions responsible for migrat-
ing counts between per-thread variables and the global
variables. Lines 1-7 shows globalize_count (),
which is identical to earlier implementations. Lines 9-19
shows flush_local_count_sig(), which is the
signal handler used in the theft process. Lines 11 and 12
check to see if the the ft state is REQ, and, if not returns
without change. Line 13 executes a memory barrier to en-
sure that the sampling of the theft variable happens before
any change to that variable. Line 14 sets the the ft state
to ACK, and, if line 15 sees that this thread’s fastpaths are
not running, line 16 sets the theft state to READY.

Quick Quiz 4.48: In Figure 4.24 function flush_
local_count_sig (), why are there ACCESS_
ONCE () wrappers around the uses of the theft per-
thread variable? ll

Lines 21-49 shows flush_local_count (),
which is called from the slowpath to flush all threads’
local counts. The loop spanning lines 26-34 advances the
theft state for each thread that has local count, and also
sends that thread a signal. Line 27 skips any non-existent
threads. Otherwise, line 28 checks to see if the current
thread holds any local count, and, if not, line 29 sets the
thread’s theft state to READY and line 30 skips to the
next thread. Otherwise, line 32 sets the thread’s theft
state to REQ and line 33 sends the thread a signal.

Quick Quiz 4.49: In Figure 4.24, why is it safe for
line 28 to directly access the other thread’s countermax
variable? H

Quick Quiz 4.50: In Figure 4.24, why doesn’t line 33
check for the current thread sending itself a signal? ll

Quick Quiz 4.51: The code in Figure 4.24, works with
gcc and POSIX. What would be required to make it also
conform to the ISO C standard?

The loop spanning lines 35-48 waits until each thread
reaches READY state, then steals that thread’s count.
Lines 36-37 skip any non-existent threads, and the loop
spanning lines 38-42 wait until the current thread’s
theft state becomes READY. Line 39 blocks for a
millisecond to avoid priority-inversion problems, and if
line 40 determines that the thread’s signal has not yet
arrived, line 41 resends the signal. Execution reaches
line 43 when the thread’s the £t state becomes READY,
so lines 43-46 do the thieving. Line 47 then sets the
thread’s theft state back to IDLE.

Quick Quiz 4.52: In Figure 4.24, why does line 41

CHAPTER 4. COUNTING

1 static void globalize_count (void)

2 A

3 globalcount += counter;

4 counter = 0;

5 globalreserve —-= countermax;

6 countermax = 0;

7}

8

9 static void flush_local_count_sig(int unused)
10 {

11 if (ACCESS_ONCE (theft) != THEFT_REQ)
12 return;

13 smp_mb () ;

14 ACCESS_ONCE (theft) = THEFT_ACK;

15 if (!counting) {

16 ACCESS_ONCE (theft) = THEFT_READY;
17 }

18 smp_mb () ;

19 }
20
21 static void flush_local_count (void)
22 |

23 int t;
24 thread_id_t tid;

25

26 for_each_tid(t, tid)

27 if (theftp([t] != NULL) {

28 if (xcountermaxp([t] == 0) {

29 ACCESS_ONCE (xtheftp[t]) = THEFT_READY;
30 continue;

31 }

32 ACCESS_ONCE (xtheftp[t]) = THEFT_REQ;
33 pthread_kill (tid, SIGUSR1);

34 }

35 for_each_tid(t, tid) {

36 if (theftp[t] == NULL)

37 continue;

38 while (ACCESS_ONCE (#theftp[t]) != THEFT_READY)
39 poll (NULL, 0, 1);

40 if (ACCESS_ONCE (#theftp[t]) == THEFT_REQ)
41 pthread_kill (tid, SIGUSR1);

42 }

43 globalcount += xcounterp[t];

44 xcounterp([t] = 0;

45 globalreserve —-= xcountermaxp[t];

46 xcountermaxp[t] = 0;

47 ACCESS_ONCE (*theftp[t]) = THEFT_IDLE;
48 }

49 }

50

51 static void balance_count (void)

52 {

53 countermax = globalcountmax -

54 globalcount - globalreserve;

55 countermax /= num_online_threads();

56 if (countermax > MAX_COUNTERMAX)

57 countermax = MAX_COUNTERMAX;

58 globalreserve += countermax;

59 counter = countermax / 2;

60 if (counter > globalcount)

61 counter = globalcount;

62 globalcount —-= counter;

63 }

Figure 4.24: Signal-Theft Limit Counter Value-Migration
Functions

4.4. EXACT LIMIT COUNTERS

1 int add_count (unsigned long delta)

2 {

3 int fastpath = 0;

4

5 counting = 1;

6 barrier();

7 if (countermax - counter >= delta &&
8 ACCESS_ONCE (theft) <= THEFT_REQ) {
9 counter += delta;
10 fastpath = 1;
11 }

12 barrier();
13 counting = 0;

14 barrier();

15 if (ACCESS_ONCE (theft) == THEFT_ACK) {
16 smp_mb () ;

17 ACCESS_ONCE (theft) = THEFT_READY;

18 }

19 if (fastpath)

20 return 1;

21 spin_lock (&gblcnt_mutex) ;
22 globalize_count () ;
23 if (globalcountmax - globalcount -

24 globalreserve < delta) {

25 flush_local_count () ;

26 if (globalcountmax - globalcount -
217 globalreserve < delta) {

28 spin_unlock (&gblcnt_mutex) ;

29 return 0O;

30 }

31 }

32 globalcount += delta;

33 balance_count () ;

34 spin_unlock (&gblcnt_mutex) ;
35 return 1;

Figure 4.25: Signal-Theft Limit Counter Add Function

resend the signal? B

Lines 51-63 show balance_count (), which is sim-
ilar to that of earlier examples.

Figure 4.25 shows the add_count () function. The
fastpath spans lines 5-20, and the slowpath lines 21-35.
Line 5 sets the per-thread count ing variable to 1 so that
any subsequent signal handlers interrupting this thread
will set the theft state to ACK rather than READY,
allowing this fastpath to complete properly. Line 6 pre-
vents the compiler from reordering any of the fastpath
body to precede the setting of count ing. Lines 7 and
8 check to see if the per-thread data can accommodate
the add_count () and if there is no ongoing theft in
progress, and if so line 9 does the fastpath addition and
line 10 notes that the fastpath was taken.

In either case, line 12 prevents the compiler from re-
ordering the fastpath body to follow line 13, which per-
mits any subsequent signal handlers to undertake theft.
Line 14 again disables compiler reordering, and then
line 15 checks to see if the signal handler deferred the
theft state-change to READY, and, if so, line 16 exe-

49

38 int sub_count (unsigned long delta)

39 {

40 int fastpath = 0;
41

42 counting = 1;

43 barrier();
44 if (counter >= delta &&

45 ACCESS_ONCE (theft) <= THEFT_REQ) {
46 counter -= delta;

47 fastpath = 1;

48 }

49 barrier();

50 counting = 0;

51 barrier();

52 if (ACCESS_ONCE (theft) == THEFT_ACK) {
53 smp_mb () ;

54 ACCESS_ONCE (theft) = THEFT_READY;

55 }

56 if (fastpath)

57 return 1;

58 spin_lock (&gblcnt_mutex) ;
59 globalize_count ();
60 if (globalcount < delta) {

61 flush_local_count () ;

62 if (globalcount < delta) {
63 spin_unlock (&gblcnt_mutex) ;
64 return 0;

65 }

66 }

67 globalcount —= delta;

68 balance_count () ;

69 spin_unlock (&gblcnt_mutex) ;
70 return 1;

71 }

Figure 4.26: Signal-Theft Limit Counter Subtract Func-
tion

()]
o

1 unsigned long read_count (void)
2 {

3 int t;

4 unsigned long sum;

5

6 spin_lock (&gblcnt_mutex) ;

7 sum = globalcount;

8 for_each_thread (t)

9 if (counterp([t] != NULL)
10 sum += xcounterpl[t];
11 spin_unlock (&gblcnt_mutex) ;
12 return sum;
13 }

Figure 4.27: Signal-Theft Limit Counter Read Function

cutes a memory barrier to ensure that any CPU that sees
line 17 setting state to READY also sees the effects of
line 9. If the fastpath addition at line 9 was executed, then
line 20 returns success.

Otherwise, we fall through to the slowpath starting at
line 21. The structure of the slowpath is similar to those
of earlier examples, so its analysis is left as an exercise
to the reader. Similarly, the structure of sub_count ()
on Figure 4.26 is the same as that of add_count (), so
the analysis of sub_count () is also left as an exercise
for the reader, as is the analysis of read_count () in
Figure 4.27.

Lines 1-12 of Figure 4.28 show count_init (),
which set up flush_local_count_sig() as the
signal handler for SIGUSR1, enabling the pthread_
kill () callsin £lush_local_count () to invoke
flush_local_count_sig (). The code for thread
registry and unregistry is similar to that of earlier exam-
ples, so its analysis is left as an exercise for the reader.

4.4.5 Signal-Theft Limit Counter Discus-
sion

The signal-theft implementation runs more than twice as
fast as the atomic implementation on my Intel Core Duo
laptop. Is it always preferable?

The signal-theft implementation would be vastly prefer-
able on Pentium-4 systems, given their slow atomic in-
structions, but the old 80386-based Sequent Symmetry
systems would do much better with the shorter path length
of the atomic implementation. However, this increased
update-side performance comes at the prices of higher
read-side overhead: Those POSIX signals are not free. If
ultimate performance is of the essence, you will need to
measure them both on the system that your application is

CHAPTER 4. COUNTING

1 void count_init (void)
2
3 struct sigaction sa;
4
5 sa.sa_handler = flush_local_count_sig;
6 sigemptyset (&sa.sa_mask);
7 sa.sa_flags = 0;
8 if (sigaction(SIGUSR1, &sa, NULL) != 0) {
9 perror ("sigaction");
10 exit (-1);
11 }
12 }
13
14 void count_register_thread(void)
15 {
16 int idx = smp_thread_id();
17
18 spin_lock (&gblcnt_mutex) ;
19 counterp[idx] = &counter;
20 countermaxp[idx] = &countermax;
21 theftp[idx] = &theft;
22 spin_unlock (&gblcnt_mutex) ;
23}
24

25 void count_unregister_thread(int nthreadsexpected)
26 {
27 int idx = smp_thread_id();

29 spin_lock (&gblcnt_mutex) ;
30 globalize_count ();

31 counterp[idx] = NULL;

32 countermaxp[idx] = NULL;

33 theftp[idx] = NULL;

34 spin_unlock (&gblcnt_mutex) ;

Figure 4.28: Signal-Theft Limit Counter Initialization
Functions

4.6. PARALLEL COUNTING DISCUSSION

to be deployed on.

Quick Quiz 4.53: Not only are POSIX signals slow,
sending one to each thread simply does not scale. What
would you do if you had (say) 10,000 threads and needed
the read side to be fast? ll

This is but one reason why high-quality APIs are so
important: they permit implementations to be changed as
required by ever-changing hardware performance charac-
teristics.

Quick Quiz 4.54: What if you want an exact limit
counter to be exact only for its lower limit, but to allow
the upper limit to be inexact? ll

4.5 Applying Specialized Parallel
Counters

Although the exact limit counter implementations in Sec-
tion 4.4 can be very useful, they are not much help if the
counter’s value remains near zero at all times, as it might
when counting the number of outstanding accesses to an
I/O device. The high overhead of such near-zero counting
is especially painful given that we normally don’t care
how many references there are. As noted in the removable
I/O device access-count problem posed by Quick Quiz
4.5, the number of accesses is irrelevant except in those
rare cases when someone is actually trying to remove the
device.

One simple solution to this problem is to add a large
“bias” (for example, one billion) to the counter in order
to ensure that the value is far enough from zero that the
counter can operate efficiently. When someone wants
to remove the device, this bias is subtracted from the
counter value. Counting the last few accesses will be
quite inefficient, but the important point is that the many
prior accesses will have been counted at full speed.

Quick Quiz 4.55: What else had you better have done
when using a biased counter? Hl

Although a biased counter can be quite helpful and
useful, it is only a partial solution to the removable I/O
device access-count problem called out on page 31. When
attempting to remove a device, we must not only know
the precise number of current I/O accesses, we also need
to prevent any future accesses from starting. One way
to accomplish this is to read-acquire a reader-writer lock
when updating the counter, and to write-acquire that same
reader-writer lock when checking the counter. Code for
doing I/O might be as follows:

51

1 read_lock (&mylock) ;
2 if
3 read_unlock (&mylock) ;
cancel_io();
} else {
add_count (1) ;
read_unlock (&mylock) ;
do_io();
sub_count (1) ;

}

(removing) {

O W O J o U b

1

Line 1 read-acquires the lock, and either line 3 or 7
releases it. Line 2 checks to see if the device is being
removed, and, if so, line 3 releases the lock and line 4
cancels the I/O, or takes whatever action is appropriate
given that the device is to be removed. Otherwise, line 6
increments the access count, line 7 releases the lock, line 8
performs the I/0, and line 9 decrements the access count.

Quick Quiz 4.56: This is ridiculous! We are read-
acquiring a reader-writer lock to update the counter?
What are you playing at???

The code to remove the device might be as follows:

write_lock (&mylock);

removing = 1;

sub_count (mybias) ;

write_unlock (&mylock) ;

while (read_count () != 0) {
poll (NULL, 0, 1);

}

remove_device () ;

O J o U W

Line 1 write-acquires the lock and line 4 releases it.
Line 2 notes that the device is being removed, and the
loop spanning lines 5-7 wait for any I/O operations to
complete. Finally, line 8 does any additional processing
needed to prepare for device removal.

Quick Quiz 4.57: What other issues would need to be
accounted for in a real system? W

4.6 Parallel Counting Discussion

This chapter has presented the reliability, performance,
and scalability problems with traditional counting primi-
tives. The C-language ++ operator is not guaranteed to
function reliably in multithreaded code, and atomic oper-
ations to a single variable neither perform nor scale well.
This chapter has also presented a number of counting al-
gorithms that perform and scale extremely well in certain
special cases.

Table 4.1 shows the performance of the four paral-

52 CHAPTER 4. COUNTING
Reads
Algorithm Section | Updates | 1 Core \ 32 Cores
count_stat.c 4272 11.5ns | 408 ns 409 ns
count_stat_eventual.c 4.2.3 11.6 ns 1 ns 1 ns
count_end.c 424 6.3ns | 389ns | 51,200 ns
count_end_rcu.c 12.2.1 5.7ns | 354 ns 501 ns

Table 4.1: Statistical Counter Performance on Power-6

lel statistical counting algorithms. All four algorithms
provide near-perfect linear scalability for updates. The
per-thread-variable implementation (count_stat.c)
is significantly faster on updates than the array-based im-
plementation (count_end. c), but is slower at reads,
and suffers severe lock contention when there are many
parallel readers. This contention can be addressed using
the deferred-processing techniques introduced in Chap-
ter 8, as shown on the count_end_rcu. c row of Ta-
ble 4.1. Deferred processing also shines on the count_
stat_eventual. c row, courtesy of eventual consis-
tency.

Quick Quiz 4.58: On the count_stat.c row of
Table 4.1, we see that the update side scales linearly with
the number of threads. How is that possible given that the
more threads there are, the more per-thread counters must
be summed up? l

Quick Quiz 4.59: Even on the last row of Table 4.1,
the read-side performance of these statistical counter im-
plementations is pretty horrible. So why bother with
them?

Figure 4.2 shows the performance of the parallel limit-
counting algorithms. Exact enforcement of the limits
incurs a substantial performance penalty, although on
this 4.7GHz Power-6 system that penalty can be reduced
by substituting read-side signals for update-side atomic
operations. All of these implementations suffer from read-
side lock contention in the face of concurrent readers.

Quick Quiz 4.60: Given the performance data shown
in Table 4.2, we should always prefer update-side signals
over read-side atomic operations, right? ll

Quick Quiz 4.61: Can advanced techniques be ap-
plied to address the lock contention for readers seen in
Table 4.27 W

The fact that these algorithms only work well in their
respective special cases might be considered a major prob-
lem with parallel programming in general. After all, the
C-language ++ operator works just fine in single-threaded
code, and not just for special cases, but in general, right?

This line of reasoning does contain a grain of truth, but
is in essence misguided. The problem is not parallelism
as such, but rather scalability. To understand this, first
consider the C-language ++ operator. The fact is that it
does not work in general, only for a restricted range of
numbers. If you need to deal with 1,000-digit decimal
numbers, the C-language ++ operator will not work for
you.

Quick Quiz 4.62: The ++ operator works just fine
for 1,000-digit numbers! Haven’t you heard of operator
overloading???

This problem is not specific to arithmetic. Suppose you
need to store and query data. Should you use an ASCII
file, XML, a relational database, a linked list, a dense
array, a B-tree, a radix tree, or any of the plethora of other
data structures and environments that permit data to be
stored and queried? It depends on what you need to do,
how fast you need it done, and how large your data set is.

Similarly, if you need to count, your solution will de-
pend on how large of numbers you need to work with,
how many CPUs need to be manipulating a given number
concurrently, how the number is to be used, and what
level of performance and scalability you will need.

Nor is this problem specific to software. The design
for a bridge meant to allow people to walk across a small
brook might be a simple as a single wooden plank. But
you would probably not use a plank to span the kilometers-
wide mouth of the Columbia River, nor would such a
design be advisable for bridges carrying concrete trucks.
In short, just as bridge design must change with increasing
span and load, so must software design change as the
number of CPUs increases.

The examples in this chapter have shown that an impor-
tant tool permitting large numbers of CPUs to be brought
to bear is partitioning. The counters might be fully par-
titioned, as in the statistical counters discussed in Sec-
tion 4.2, or partially partitioned as in the limit counters
discussed in Sections 4.3 and 4.4. Partitioning in general
will be considered in far greater depth in Chapter 5, and

count_stat.c
count_stat_eventual.c
count_end.c
count_end_rcu.c
count_stat.c

4.6. PARALLEL COUNTING DISCUSSION

Reads
Algorithm Section | Exact? | Updates | 1 Core \ 64 Cores
count_lim.c 432 N 3.6ns | 375ns | 50,700 ns
count_lim_app.c 434 N 11.7ns | 369 ns | 51,000 ns
count_lim_atomic.c 4.4.1 Y 51.4ns | 427 ns | 49,400 ns
count_lim_sig.c 444 Y 10.2ns | 370 ns | 54,000 ns

Table 4.2: Limit Counter Performance on Power-6

partial parallelization in particular in Section 5.4, where
it is called parallel fastpath.

Quick Quiz 4.63: But if we are going to have to parti-
tion everything, why bother with shared-memory multi-
threading? Why not just partition the problem completely
and run as multiple processes, each in its own address
space? l

The partially partitioned counting algorithms used lock-
ing to guard the global data, and locking is the subject
of Chapter 6. In contrast, the partitioned data tended to
be fully under the control of the corresponding thread, so
that no synchronization whatsoever was required. This
data ownership will be introduced in Section 5.3.4 and
discussed in more detail in Chapter 7.

Finally, the eventually consistent statistical counter dis-
cussed in Section 4.2.3 showed how deferring activity (in
that case, updating the global counter) can provide sub-
stantial performance and scalability benefits. Chapter 8
will examine a number of additional ways that deferral
can improve performance, scalability, and even real-time
response.

In short, as noted at the beginning of this chapter, the
simplicity of the concepts underlying counting have al-
lowed us to explore many fundamental concurrency issues
without the distraction of elaborate data structures or com-
plex synchronization primitives. Later chapters will dig
more deeply into these issues.

53

count_lim.c
count_lim_app.c
count_lim_atomic.c
count_lim_sig.c

54

CHAPTER 4. COUNTING

Chapter 5

Partitioning and Synchronization Design

This chapter describes how to design software to
take advantage of the multiple CPUs that are increas-
ingly appearing in commodity systems. It does this
by presenting a number of idioms, or “design pat-
terns” [Ale79, GHIV95, SSRBO00] that can help you bal-
ance performance, scalability, and response time. As
noted in earlier chapters, the most important decision
you will make when creating parallel software is how to
carry out the partitioning. Correctly partitioned problems
lead to simple, scalable, and high-performance solutions,
while poorly partitioned problems result in slow and com-
plex solutions. This chapter will help you design partition-
ing into your code. The word “design” is very important:
You should partition first and code second. Reversing
this order often leads to poor performance and scalability
along with great frustration.

To this end, Section 5.1 presents partitioning exercises,
Section 5.2 reviews partitionability design criteria, Sec-
tion 5.3 discusses selecting an appropriate synchroniza-
tion granularity, Section 5.4 gives an overview of im-
portant parallel-fastpath designs that provide speed and
scalability in the common case with a simpler but less-
scalable fallback “slow path” for unusual situations, and
finally Section 5.5 takes a brief look beyond partitioning.

5.1 Partitioning Exercises

This section uses a pair of exercises (the classic Din-
ing Philosophers problem and a double-ended queue) to
demonstrate the value of partitioning.

5.1.1 Dining Philosophers Problem

Figure 5.1 shows a diagram of the classic Dining Philoso-
phers problem [Dij71]. This problem features five philoso-
phers who do nothing but think and eat a “very difficult

55

Figure 5.1: Dining Philosophers Problem

kind of spaghetti” which requires two forks to eat. A
given philosopher is permitted to use only the forks to his
or her immediate right and left, and once a philosopher
picks up a fork, he or she will not put it down until sated.'

The object is to construct an algorithm that, quite liter-
ally, prevents starvation. One starvation scenario would
be if all of the philosophers picked up their leftmost forks
simultaneously. Because none of them would put down
their fork until after they ate, and because none of them
may pick up their second fork until at least one has fin-
ished eating, they all starve. Please note that it is not
sufficient to allow at least one philosopher to eat. As Fig-
ure 5.2 shows, starvation of even a few of the philosophers
is to be avoided.

Dijkstra’s solution used a global semaphore, which

! Readers who have difficulty imagining a food that requires two
forks are invited to instead think in terms of chopsticks.

56 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 5.2: Partial Starvation Is Also Bad

Figure 5.3: Dining Philosophers Problem, Textbook Solu-
tion

works fine assuming negligible communications delays,
an assumption that became invalid in the late 1980s or
early 1990s.2 Therefore, recent solutions number the
forks as shown in Figure 5.3. Each philosopher picks up
the lowest-numbered fork next to his or her plate, then
picks up the highest-numbered fork. The philosopher
sitting in the uppermost position in the diagram thus picks
up the leftmost fork first, then the rightmost fork, while
the rest of the philosophers instead pick up their rightmost

2 It is all too easy to denigrate Dijkstra from the viewpoint of the
year 2012, more than 40 years after the fact. If you still feel the need
to denigrate Dijkstra, my advice is to publish something, wait 40 years,
and then see how your words stood the test of time.

fork first. Because two of the philosophers will attempt
to pick up fork 1 first, and because only one of those
two philosophers will succeed, there will be five forks
available to four philosophers. At least one of these four
will be guaranteed to have two forks, and thus be able to
proceed eating.

This general technique of numbering resources and
acquiring them in numerical order is heavily used as a
deadlock-prevention technique. However, it is easy to
imagine a sequence of events that will result in only one
philosopher eating at a time even though all are hungry:

1. P2 picks up fork 1, preventing P1 from taking a fork.
2. P3 picks up fork 2.
3. P4 picks up fork 3.
PS5 picks up fork 4.

PS5 picks up fork 5 and eats.

A U

PS5 puts down forks 4 and 5.
7. P4 picks up fork 4 and eats.

In short, this algorithm can result in only one philoso-
pher eating at a given time, even when all five philoso-
phers are hungry, despite the fact that there are more than
enough forks for two philosophers to eat concurrently.

Please think about ways of partitioning the Dining
Philosophers Problem before reading further.

5.1. PARTITIONING EXERCISES

Figure 5.4: Dining Philosophers Problem, Partitioned

One approach is shown in Figure 5.4, which includes
four philosophers rather than five to better illustrate the
partition technique. Here the upper and rightmost philoso-
phers share a pair of forks, while the lower and leftmost
philosophers share another pair of forks. If all philoso-
phers are simultaneously hungry, at least two will always
be able to eat concurrently. In addition, as shown in the
figure, the forks can now be bundled so that the pair are
picked up and put down simultaneously, simplifying the
acquisition and release algorithms.

Quick Quiz 5.1: Is there a better solution to the Dining
Philosophers Problem? H

This is an example of “horizontal parallelism” [Inm85]
or “data parallelism”, so named because there is no de-
pendency among the pairs of philosophers. In a horizon-
tally parallel data-processing system, a given item of data
would be processed by only one of a replicated set of
software components.

Quick Quiz 5.2: And in just what sense can this “hori-
zontal parallelism” be said to be “horizontal”? ll

5.1.2 Double-Ended Queue

A double-ended queue is a data structure containing a
list of elements that may be inserted or removed from
either end [Knu73]. It has been claimed that a lock-based
implementation permitting concurrent operations on both
ends of the double-ended queue is difficult [Gro07]. This
section shows how a partitioning design strategy can result

57

Lock L Lock R
Header L Header R

Lock L Lock R
Header L] 0 I Header R

Lock L Lock R

HeaderL [=1 0 [S =] 1 [=] HeaderR

Lock L Lock R

SN

Header R

Lock L Lock R

Header L n u Header R

Figure 5.5: Double-Ended Queue With Left- and Right-
Hand Locks

in a reasonably simple implementation, looking at three
general approaches in the following sections.

5.1.2.1 Left- and Right-Hand Locks

One seemingly straightforward approach would be to
use a doubly linked list with a left-hand lock for left-
hand-end enqueue and dequeue operations along with a
right-hand lock for right-hand-end operations, as shown
in Figure 5.5. However, the problem with this approach is
that the two locks’ domains must overlap when there are
fewer than four elements on the list. This overlap is due to
the fact that removing any given element affects not only
that element, but also its left- and right-hand neighbors.
These domains are indicated by color in the figure, with
blue with downward stripes indicating the domain of the
left-hand lock, red with upward stripes indicating the
domain of the right-hand lock, and purple (with no stripes)
indicating overlapping domains. Although it is possible
to create an algorithm that works this way, the fact that it
has no fewer than five special cases should raise a big red
flag, especially given that concurrent activity at the other
end of the list can shift the queue from one special case
to another at any time. It is far better to consider other
designs.

58 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

Lock L
DEQL

Lock R
DEQR

Figure 5.6: Compound Double-Ended Queue

5.1.2.2 Compound Double-Ended Queue

One way of forcing non-overlapping lock domains is
shown in Figure 5.6. Two separate double-ended queues
are run in tandem, each protected by its own lock. This
means that elements must occasionally be shuttled from
one of the double-ended queues to the other, in which case
both locks must be held. A simple lock hierarchy may
be used to avoid deadlock, for example, always acquiring
the left-hand lock before acquiring the right-hand lock.
This will be much simpler than applying two locks to
the same double-ended queue, as we can unconditionally
left-enqueue elements to the left-hand queue and right-
enqueue elements to the right-hand queue. The main com-
plication arises when dequeuing from an empty queue, in
which case it is necessary to:

1. If holding the right-hand lock, release it and acquire
the left-hand lock.

Acquire the right-hand lock.

Rebalance the elements across the two queues.

oo

Remove the required element if there is one.

5. Release both locks.

Quick Quiz 5.3: In this compound double-ended
queue implementation, what should be done if the queue
has become non-empty while releasing and reacquiring
the lock? l

The rebalancing operation might well shuttle a given
element back and forth between the two queues, wasting
time and possibly requiring workload-dependent heuris-
tics to obtain optimal performance. Although this might
well be the best approach in some cases, it is interesting
to try for an algorithm with greater determinism.

5.1.2.3 Hashed Double-Ended Queue

One of the simplest and most effective ways to deter-
ministically partition a data structure is to hash it. It is
possible to trivially hash a double-ended queue by assign-
ing each element a sequence number based on its position

DEQO
Lock 0

DEQ 3
Lock 3

DEQ 2
Lock 2

Index L

Index R
Lock R

Lock L

Figure 5.7: Hashed Double-Ended Queue

in the list, so that the first element left-enqueued into
an empty queue is numbered zero and the first element
right-enqueued into an empty queue is numbered one. A
series of elements left-enqueued into an otherwise-idle
queue would be assigned decreasing numbers (-1, -2, -
3, ...), while a series of elements right-enqueued into an
otherwise-idle queue would be assigned increasing num-
bers (2, 3, 4, ...). A key point is that it is not necessary
to actually represent a given element’s number, as this
number will be implied by its position in the queue.

Given this approach, we assign one lock to guard the
left-hand index, one to guard the right-hand index, and
one lock for each hash chain. Figure 5.7 shows the result-
ing data structure given four hash chains. Note that the
lock domains do not overlap, and that deadlock is avoided
by acquiring the index locks before the chain locks, and
by never acquiring more than one lock of each type (index
or chain) at a time.

Each hash chain is itself a double-ended queue, and in
this example, each holds every fourth element. The upper-
most portion of Figure 5.8 shows the state after a single
element (“R17) has been right-enqueued, with the right-
hand index having been incremented to reference hash
chain 2. The middle portion of this same figure shows the
state after three more elements have been right-enqueued.
As you can see, the indexes are back to their initial states
(see Figure 5.7), however, each hash chain is now non-
empty. The lower portion of this figure shows the state
after three additional elements have been left-enqueued
and an additional element has been right-enqueued.

From the last state shown in Figure 5.8, a left-dequeue
operation would return element “L-2” and leave the left-
hand index referencing hash chain 2, which would then
contain only a single element (“R2”). In this state, a
left-enqueue running concurrently with a right-enqueue
would result in lock contention, but the probability of
such contention can be reduced to arbitrarily low levels

5.1. PARTITIONING EXERCISES

R1
DEQO |DEQ1 |DEQ2 | DEQ3
Index L Index R
R4 R1 R2 R3
DEQO |DEQ1 |DEQ2 | DEQ3
Index L Index R
R4 R5 R2 R3
LO R1 L-2 L-1
DEQO |DEQ1 | DEQ2 | DEQ3
Index L Index R

Figure 5.8: Hashed Double-Ended Queue After Insertions

by using a larger hash table.

Figure 5.9 shows how 12 elements would be organized
in a four-hash-bucket parallel double-ended queue. Each
underlying single-lock double-ended queue holds a one-
quarter slice of the full parallel double-ended queue.

Figure 5.10 shows the corresponding C-language data
structure, assuming an existing struct degq that pro-
vides a trivially locked double-ended-queue implementa-
tion. This data structure contains the left-hand lock on
line 2, the left-hand index on line 3, the right-hand lock
on line 4 (which is cache-aligned in the actual implemen-
tation), the right-hand index on line 5, and, finally, the

59

R4 | R5 | R6 | R7
Lo | R1 | R2 | R3
L-4 | L-3 | L-2 | L1

L-8 | L-7 | L-6 | L-5

Figure 5.9: Hashed Double-Ended Queue With 12 Ele-
ments
1 struct pdeqg {
2 spinlock_t llock;
3 int lidx;
4 spinlock_t rlock;
5 int ridx;
6 struct deq bkt [DEQ_N_BKTS];
T}

Figure 5.10: Lock-Based Parallel Double-Ended Queue
Data Structure

hashed array of simple lock-based double-ended queues
on line 6. A high-performance implementation would
of course use padding or special alignment directives to
avoid false sharing.

Figure 5.11 (Lockhdeq. c) shows the implementa-
tion of the enqueue and dequeue functions.® Discussion
will focus on the left-hand operations, as the right-hand
operations are trivially derived from them.

Lines 1-13 show pdeq pop_1 (), which left-
dequeues and returns an element if possible, returning
NULL otherwise. Line 6 acquires the left-hand spinlock,
and line 7 computes the index to be dequeued from. Line 8
dequeues the element, and, if line 9 finds the result to be
non-NULL, line 10 records the new left-hand index. Ei-
ther way, line 11 releases the lock, and, finally, line 12
returns the element if there was one, or NULL otherwise.

Lines 29-38 shows pdeq_push_1 (), which left-
enqueues the specified element. Line 33 acquires the
left-hand lock, and line 34 picks up the left-hand in-
dex. Line 35 left-enqueues the specified element onto
the double-ended queue indexed by the left-hand index.
Line 36 then updates the left-hand index and line 37 re-
leases the lock.

As noted earlier, the right-hand operations are com-
pletely analogous to their left-handed counterparts, so
their analysis is left as an exercise for the reader.

Quick Quiz 5.4: Is the hashed double-ended queue a

3 One could easily create a polymorphic implementation in any
number of languages, but doing so is left as an exercise for the reader.

60

CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

struct cds_list_head =xpdeq _pop_l (struct pdeq =d)
{

struct cds_list_head xe;
int 1i;

spin_lock (&d->1lock);
i = moveright (d->1idx) ;
e = deq_pop_l(&d->bkt[i]);
if (e != NULL)

d->1lidx = 1i;
spin_unlock (&d->1lock);
return e;

}

struct cds_list_head *pdeq_pop_r (struct pdeqg =*d)
{

struct cds_list_head xe;

int 1i;

spin_lock (&d->rlock) ;
i = moveleft (d->ridx);
e = deq_pop_r (&d->bkt [i]);
if (e != NULL)

d->ridx = 1i;
spin_unlock (&d->rlock) ;
return e;

}

void pdeqg_push_1 (struct cds_list_head xe, struct pdeqg
{

int i;

spin_lock (&d->1lock) ;
i = d->1idx;
deq_push_1 (e, &d->bkt[i]);
d->1idx = moveleft (d->1idx);
spin_unlock (&d->1lock) ;

}

void pdeqg_push_r(struct cds_list_head *e, struct pdeq
{

int 1i;

spin_lock (&d->rlock) ;

i = d->ridx;

deq_push_r (e, &d->bkt[i]);
d->ridx = moveright (d->ridx);
spin_unlock (&d->rlock) ;

Figure 5.11: Lock-Based Parallel Double-Ended Queue Implementation

*d)

*d)

5.1. PARTITIONING EXERCISES

good solution? Why or why not? ll

5.1.2.4 Compound Double-Ended Queue Revisited

This section revisits the compound double-ended queue,
using a trivial rebalancing scheme that moves all the ele-
ments from the non-empty queue to the now-empty queue.

Quick Quiz 5.5: Move all the elements to the queue
that became empty? In what possible universe is this
brain-dead solution in any way optimal???

In contrast to the hashed implementation presented in
the previous section, the compound implementation will
build on a sequential implementation of a double-ended
queue that uses neither locks nor atomic operations.

Figure 5.12 shows the implementation. Unlike the
hashed implementation, this compound implementation
is asymmetric, so that we must consider the pdeq_pop__
1 () and pdeq_pop_r () implementations separately.

Quick Quiz 5.6: Why can’t the compound parallel
double-ended queue implementation be symmetric? ll

The pdeq_pop_1 () implementation is shown on
lines 1-16 of the figure. Line 5 acquires the left-hand lock,
which line 14 releases. Line 6 attempts to left-dequeue
an element from the left-hand underlying double-ended
queue, and, if successful, skips lines 8-13 to simply return
this element. Otherwise, line 8 acquires the right-hand
lock, line 9 left-dequeues an element from the right-hand
queue, and line 10 moves any remaining elements on the
right-hand queue to the left-hand queue, line 11 initializes
the right-hand queue, and line 12 releases the right-hand
lock. The element, if any, that was dequeued on line 10
will be returned.

The pdeqg_pop_r () implementation is shown on
lines 18-38 of the figure. As before, line 22 acquires
the right-hand lock (and line 36 releases it), and line 23
attempts to right-dequeue an element from the right-hand
queue, and, if successful, skips lines 24-35 to simply re-
turn this element. However, if line 24 determines that
there was no element to dequeue, line 25 releases the
right-hand lock and lines 26-27 acquire both locks in
the proper order. Line 28 then attempts to right-dequeue
an element from the right-hand list again, and if line 29
determines that this second attempt has failed, line 30
right-dequeues an element from the left-hand queue (if
there is one available), line 31 moves any remaining ele-
ments from the left-hand queue to the right-hand queue,
and line 32 initializes the left-hand queue. Either way,
line 34 releases the left-hand lock.

Quick Quiz 5.7: Why is it necessary to retry the right-

61

dequeue operation on line 28 of Figure 5.12? B

Quick Quiz 5.8: Surely the left-hand lock must some-
times be available!!! So why is it necessary that line 25 of
Figure 5.12 unconditionally release the right-hand lock?
]

The pdeg_push_1 () implementation is shown on
lines 40-47 of Figure 5.12. Line 44 acquires the left-
hand spinlock, line 45 left-enqueues the element onto
the left-hand queue, and finally line 46 releases the lock.
The pdeqg_engqueue_r () implementation (shown on
lines 49-56) is quite similar.

5.1.2.5 Double-Ended Queue Discussion

The compound implementation is somewhat more com-
plex than the hashed variant presented in Section 5.1.2.3,
but is still reasonably simple. Of course, a more intel-
ligent rebalancing scheme could be arbitrarily complex,
but the simple scheme shown here has been shown to per-
form well compared to software alternatives [DCW™'11]
and even compared to algorithms using hardware as-
sist [DLM*10]. Nevertheless, the best we can hope for
from such a scheme is 2x scalability, as at most two
threads can be holding the dequeue’s locks concurrently.
This limitation also applies to algorithms based on non-
blocking synchronization, such as the compare-and-swap-
based dequeue algorithm of Michael [Mic03].*

In fact, as noted by Dice et al. [DLM'10], an unsyn-
chronized single-threaded double-ended queue signifi-
cantly outperforms any of the parallel implementations
they studied. Therefore, the key point is that there can be
significant overhead enqueuing to or dequeuing from a
shared queue, regardless of implementation. This should
come as no surprise given the material in Chapter 2, given
the strict FIFO nature of these queues.

Furthermore, these strict FIFO queues are strictly FIFO
only with respect to linearization points [HW90]® that
are not visible to the caller, in fact, in these examples, the
linearization points are buried in the lock-based critical
sections. These queues are not strictly FIFO with re-
spect to (say) the times at which the individual operations
started [HKLP12]. This indicates that the strict FIFO
property is not all that valuable in concurrent programs,

4 This paper is interesting in that it showed that special double-
compare-and-swap (DCAS) instructions are not needed for lock-free im-
plementations of double-ended queues. Instead, the common compare-
and-swap (e.g., x86 cmpxchg) suffices.

5 In short, a linearization point is a single point within a given
function where that function can be said to have taken effect. In this
lock-based implementation, the linearization points can be said to be
anywhere within the critical section that does the work.

62

CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

struct cds_list_head =xpdeq pop_1l (struct pdeqg xd)
{

struct cds_list_head =xe;

spin_lock (&d->1lock) ;
e = deg_pop_1(&d->1deq);
if (e == NULL) {

spin_lock (&d->rlock) ;

e = deqg_pop_1 (&d->rdeq);

cds_list_splice(&d->rdeqg.chain, &d->ldeq.chain);

CDS_INIT_LIST_HEAD (&d->rdeq.chain) ;
spin_unlock (&d->rlock) ;

}

spin_unlock (&d->1lock) ;

return e;

}

struct cds_list_head *pdeq _pop_r (struct pdeq =*d)
{

struct cds_list_head =xe;

spin_lock (&d->rlock);

e = deg_pop_r (&d->rdeq) ;

if (e == NULL) {
spin_unlock (&d->rlock);
spin_lock (&d->1lock) ;
spin_lock (&d->rlock) ;
e = deqg_pop_r (&d->rdeq);
if (e == NULL) {

e = deg_pop_r (&d->1deq);

cds_list_splice (&d->ldeqg.chain, &d->rdeq.chain);

CDS_INIT_LIST_HEAD (&d->1ldeq.chain);
}
spin_unlock (&d->1lock) ;
}
spin_unlock (&d->rlock);
return e;

}

void pdeqg_push_1 (struct cds_list_head *e, struct pdeq =d)

{

int 1i;

spin_lock (&d->1lock) ;

deqg_push_1 (e, &d->1ldeq);

spin_unlock (&d->1lock);
}

void pdeqg push_r (struct cds_list_head xe, struct pdeqg xd)

{

int i;

spin_lock (&d->rlock);
deqg_push_r (e, &d->rdeq);
spin_unlock (&d->rlock);

Figure 5.12: Compound Parallel Double-Ended Queue Implementation

5.2. DESIGN CRITERIA

and in fact, Kirsch et al. present less-strict queues that
provide improved performance and scalability [KLP12].%
All that said, if you are pushing all the data used by your
concurrent program through a single queue, you really
need to rethink your overall design.

5.1.3 Partitioning Example Discussion

The optimal solution to the dining philosophers problem
given in the answer to the Quick Quiz in Section 5.1.1 is
an excellent example of “horizontal parallelism” or “data
parallelism”. The synchronization overhead in this case
is nearly (or even exactly) zero. In contrast, the double-
ended queue implementations are examples of “vertical
parallelism” or “pipelining”, given that data moves from
one thread to another. The tighter coordination required
for pipelining in turn requires larger units of work to
obtain a given level of efficiency.

Quick Quiz 5.9: The tandem double-ended queue runs
about twice as fast as the hashed double-ended queue,
even when I increase the size of the hash table to an
insanely large number. Why is that? H

Quick Quiz 5.10: Is there a significantly better way of
handling concurrency for double-ended queues?

These two examples show just how powerful partition-
ing can be in devising parallel algorithms. Section 5.3.5
looks briefly at a third example, matrix multiply. How-
ever, all three of these examples beg for more and better
design criteria for parallel programs, a topic taken up in
the next section.

5.2 Design Criteria

One way to obtain the best performance and scalability
is to simply hack away until you converge on the best
possible parallel program. Unfortunately, if your program
is other than microscopically tiny, the space of possi-
ble parallel programs is so huge that convergence is not
guaranteed in the lifetime of the universe. Besides, what
exactly is the “best possible parallel program”? After
all, Section 1.2 called out no fewer than three parallel-
programming goals of performance, productivity, and
generality, and the best possible performance will likely
come at a cost in terms of productivity and generality.

© Nir Shavit produced relaxed stacks for roughly the same rea-
sons [Shall]. This situation leads some to believe that the linearization
points are useful to theorists rather than developers, and leads others
to wonder to what extent the designers of such data structures and
algorithms were considering the needs of their users.

63

We clearly need to be able to make higher-level choices
at design time in order to arrive at an acceptably good
parallel program before that program becomes obsolete.

However, more detailed design criteria are required to
actually produce a real-world design, a task taken up in
this section. This being the real world, these criteria often
conflict to a greater or lesser degree, requiring that the
designer carefully balance the resulting tradeoffs.

As such, these criteria may be thought of as the
“forces” acting on the design, with particularly good
tradeoffs between these forces being called “design pat-
terns” [Ale79, GHIV95].

The design criteria for attaining the three parallel-
programming goals are speedup, contention, overhead,
read-to-write ratio, and complexity:

Speedup: As noted in Section 1.2, increased perfor-
mance is the major reason to go to all of the time and
trouble required to parallelize it. Speedup is defined
to be the ratio of the time required to run a sequential
version of the program to the time required to run a
parallel version.

Contention: If more CPUs are applied to a parallel pro-
gram than can be kept busy by that program, the
excess CPUs are prevented from doing useful work
by contention. This may be lock contention, memory
contention, or a host of other performance killers.

Work-to-Synchronization Ratio: A uniprocessor,
single-threaded, non-preemptible, and non-
interruptible’ version of a given parallel program
would not need any synchronization primitives.
Therefore, any time consumed by these primitives
(including communication cache misses as well
as message latency, locking primitives, atomic
instructions, and memory barriers) is overhead that
does not contribute directly to the useful work that
the program is intended to accomplish. Note that
the important measure is the relationship between
the synchronization overhead and the overhead of
the code in the critical section, with larger critical
sections able to tolerate greater synchronization
overhead. The work-to-synchronization ratio is
related to the notion of synchronization efficiency.

Read-to-Write Ratio: A data structure that is rarely up-
dated may often be replicated rather than partitioned,
and furthermore may be protected with asymmet-
ric synchronization primitives that reduce readers’

7 Either by masking interrupts or by being oblivious to them.

64 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

synchronization overhead at the expense of that of
writers, thereby reducing overall synchronization
overhead. Corresponding optimizations are possible
for frequently updated data structures, as discussed
in Chapter 4.

Complexity: A parallel program is more complex than
an equivalent sequential program because the paral-
lel program has a much larger state space than does
the sequential program, although these larger state
spaces can in some cases be easily understood given
sufficient regularity and structure. A parallel pro-
grammer must consider synchronization primitives,
messaging, locking design, critical-section identifi-
cation, and deadlock in the context of this larger state
space.

This greater complexity often translates to higher
development and maintenance costs. Therefore, bud-
getary constraints can limit the number and types
of modifications made to an existing program, since
a given degree of speedup is worth only so much
time and trouble. Worse yet, added complexity can
actually reduce performance and scalability.

Therefore, beyond a certain point, there may be po-
tential sequential optimizations that are cheaper and
more effective than parallelization. As noted in Sec-
tion 1.2.1, parallelization is but one performance
optimization of many, and is furthermore an opti-
mization that applies most readily to CPU-based
bottlenecks.

These criteria will act together to enforce a maximum
speedup. The first three criteria are deeply interrelated, so
the remainder of this section analyzes these interrelation-
ships.?

Note that these criteria may also appear as part of the
requirements specification. For example, speedup may act
as a relative desideratum (“the faster, the better”) or as an
absolute requirement of the workload (“the system must
support at least 1,000,000 web hits per second”). Classic
design pattern languages describe relative desiderata as
forces and absolute requirements as context.

An understanding of the relationships between these
design criteria can be very helpful when identifying ap-
propriate design tradeoffs for a parallel program.

8 A real-world parallel system will be subject to many additional
design criteria, such as data-structure layout, memory size, memory-
hierarchy latencies, bandwidth limitations, and I/O issues.

1. The less time a program spends in critical sections,
the greater the potential speedup. This is a conse-
quence of Amdahl’s Law [Amd67] and of the fact
that only one CPU may execute within a given criti-
cal section at a given time.

More specifically, the fraction of time that the pro-
gram spends in a given exclusive critical section
must be much less than the reciprocal of the num-
ber of CPUs for the actual speedup to approach the
number of CPUs. For example, a program running
on 10 CPUs must spend much less than one tenth of
its time in the most-restrictive critical section if it is
to scale at all well.

2. Contention effects will consume the excess CPU
and/or wallclock time should the actual speedup be
less than the number of available CPUs. The larger
the gap between the number of CPUs and the ac-
tual speedup, the less efficiently the CPUs will be
used. Similarly, the greater the desired efficiency,
the smaller the achievable speedup.

3. If the available synchronization primitives have high
overhead compared to the critical sections that they
guard, the best way to improve speedup is to reduce
the number of times that the primitives are invoked
(perhaps by batching critical sections, using data
ownership, using asymmetric primitives (see Sec-
tion 8), or by moving toward a more coarse-grained
design such as code locking).

4. If the critical sections have high overhead compared
to the primitives guarding them, the best way to im-
prove speedup is to increase parallelism by moving
to reader/writer locking, data locking, asymmetric,
or data ownership.

5. If the critical sections have high overhead compared
to the primitives guarding them and the data structure
being guarded is read much more often than modi-
fied, the best way to increase parallelism is to move
to reader/writer locking or asymmetric primitives.

6. Many changes that improve SMP performance, for
example, reducing lock contention, also improve
real-time latencies [McKO05d].

Quick Quiz 5.11: Don'’t all these problems with crit-
ical sections mean that we should just always use non-
blocking synchronization [Her90], which don’t have criti-
cal sections? ll

5.3. SYNCHRONIZATION GRANULARITY

Sequential
Program |
Partition Batch
—> Code
Locking | ¢
Partition Batch
> Data
Locking | ¢
Own Disown

Data
Ownership

Figure 5.13: Design Patterns and Lock Granularity

5.3 Synchronization Granularity

Figure 5.13 gives a pictorial view of different levels of
synchronization granularity, each of which is described
in one of the following sections. These sections focus
primarily on locking, but similar granularity issues arise
with all forms of synchronization.

5.3.1 Sequential Program

If the program runs fast enough on a single processor, and
has no interactions with other processes, threads, or in-
terrupt handlers, you should remove the synchronization
primitives and spare yourself their overhead and complex-
ity. Some years back, there were those who would argue
that Moore’s Law would eventually force all programs
into this category. However, as can be seen in Figure 5.14,
the exponential increase in single-threaded performance
halted in about 2003. Therefore, increasing performance
will increasingly require parallelism.® The debate as to
whether this new trend will result in single chips with
thousands of CPUs will not be settled soon, but given that
Paul is typing this sentence on a dual-core laptop, the age

9 This plot shows clock frequencies for newer CPUs theoretically
capable of retiring one or more instructions per clock, and MIPS for
older CPUs requiring multiple clocks to execute even the simplest
instruction. The reason for taking this approach is that the newer CPUs’
ability to retire multiple instructions per clock is typically limited by
memory-system performance.

65

of SMP does seem to be upon us. It is also important to
note that Ethernet bandwidth is continuing to grow, as
shown in Figure 5.15. This growth will motivate multi-
threaded servers in order to handle the communications
load.

10000 =TT T T T T 7
%)
e i i
S 1000 | -
~ []
8 = -
o) 100 %? -
> - + 1
& b £]
~ 10 | ++ -
8 o ++ .
S i #+ +]
-] 1E + .
o []
O +
0.1 | | | | | | |
Yo} o To} o Te) o Te) o Te}
N~ (e0) [e0] (o] [e2] o o — —
» » D » » o o o o
— — — — ~— A A Al Al
Year

Figure 5.14: MIPS/Clock-Frequency Trend for Intel
CPUs

Please note that this does not mean that you should
code each and every program in a multi-threaded manner.
Again, if a program runs quickly enough on a single
processor, spare yourself the overhead and complexity of
SMP synchronization primitives. The simplicity of the
hash-table lookup code in Figure 5.16 underscores this
point.!® A key point is that speedups due to parallelism
are normally limited to the number of CPUs. In contrast,
speedups due to sequential optimizations, for example,
careful choice of data structure, can be arbitrarily large.

On the other hand, if you are not in this happy situation,
read on!

5.3.2 Code Locking

Code locking is quite simple due to the fact that is uses
only global locks.!! It is especially easy to retrofit an ex-
isting program to use code locking in order to run it on a

10 The examples in this section are taken from Hart et al. [HMBO6],
adapted for clarity by gathering related code from multiple files.

'L 1f your program instead has locks in data structures, or, in the case
of Java, uses classes with synchronized instances, you are instead using
“data locking”, described in Section 5.3.3.

66 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

1e+06 F—1——T—T—T T T T T 3
100000 |
o F
8 L
S 10000 F
E [
S 1000 F
K [
o 100:—
2
= [
o 10 F
o i]
1 E + =
[+]
0.1 R R N N R B B
o I O N O O O 1y o
N~ N~ [e0) [e0] D (e)] o o — —
o O O O O O O O O o
- - - - - + N N N
Year

Figure 5.15: Ethernet Bandwidth vs. Intel x86 CPU

Performance

multiprocessor. If the program has only a single shared re-
source, code locking will even give optimal performance.
However, many of the larger and more complex programs
require much of the execution to occur in critical sections,
which in turn causes code locking to sharply limits their
scalability.

Therefore, you should use code locking on programs
that spend only a small fraction of their execution time
in critical sections or from which only modest scaling
is required. In these cases, code locking will provide
a relatively simple program that is very similar to its
sequential counterpart, as can be seen in Figure 5.17.
However, note that the simple return of the comparison
in hash_search () in Figure 5.16 has now become
three statements due to the need to release the lock before
returning.

Unfortunately, code locking is particularly prone to
“lock contention”, where multiple CPUs need to acquire
the lock concurrently. SMP programmers who have taken
care of groups of small children (or groups of older people
who are acting like children) will immediately recognize
the danger of having only one of something, as illustrated
in Figure 5.18.

One solution to this problem, named “data locking”, is
described in the next section.

struct hash_table
{

long nbuckets;
struct node *x*buckets;
bi

typedef struct node {
unsigned long key;
struct node *next;
} node_t;

int hash_search (struct hash_table xh,
{

struct node *cur;

cur = h->buckets[key % h->nbuckets];

while (cur != NULL) {
if (cur->key >= key) {
return (cur->key == key);
}
cur = cur—>next;
}

return O;

long key)

Figure 5.16: Sequential-Program Hash Table Search

0 oYU W N

spinlock_t hash_lock;

struct hash_table
{

long nbuckets;

struct node =*x*buckets;
bi

typedef struct node {
unsigned long key;
struct node xnext;
} node_t;

int hash_search (struct hash_table xh,
{

struct node xcur;

int retval;

spin_lock (&hash_lock)

i
cur = h->buckets[key % h->nbuckets];

while (cur != NULL) {
if (cur->key >= key) {
retval = (cur->key == key);

spin_unlock (&hash_lock);
return retval;
}
cur = cur->next;
}
spin_unlock (&¢hash_lock) ;
return 0;

long key)

Figure 5.17: Code-Locking Hash Table Search

5.3. SYNCHRONIZATION GRANULARITY

Figure 5.18: Lock Contention

5.3.3 Data Locking

Many data structures may be partitioned, with each par-
tition of the data structure having its own lock. Then
the critical sections for each part of the data structure
can execute in parallel, although only one instance of the
critical section for a given part could be executing at a
given time. You should use data locking when contention
must be reduced, and where synchronization overhead is
not limiting speedups. Data locking reduces contention
by distributing the instances of the overly-large critical
section across multiple data structures, for example, main-
taining per-hash-bucket critical sections in a hash table,
as shown in Figure 5.19. The increased scalability again
results in a slight increase in complexity in the form of an
additional data structure, the struct bucket.

In contrast with the contentious situation shown in
Figure 5.18, data locking helps promote harmony, as il-
lustrated by Figure 5.20 — and in parallel programs, this
almost always translates into increased performance and
scalability. For this reason, data locking was heavily used
by Sequent in both its DYNIX and DYNIX/ptx operating
systems [BK8S5, Inm85, Gar90, Dov90, MD92, MG92,
MS93].

However, as those who have taken care of small chil-
dren can again attest, even providing enough to go around
is no guarantee of tranquillity. The analogous situation
can arise in SMP programs. For example, the Linux
kernel maintains a cache of files and directories (called

W oUW N

struct hash_table
{

long nbuckets;

struct bucket =xxbuckets;
i

struct bucket {
spinlock_t bucket_lock;
node_t x1list_head;

i

typedef struct node {
unsigned long key;
struct node #*next;
} node_t;

int hash_search (struct hash_table =*h,

{
struct bucket xbp;
struct node =*cur;
int retval;

bp = h—>buckets[key % h->nbuckets];

spin_lock (&§bp—>bucket_lock) ;
cur = bp->list_head;

while (cur != NULL) {
if (cur->key >= key) {
retval = (cur—->key == key);

spin_unlock (&bp->bucket_lock);
return retval;
}
cur =
}
spin_unlock (&bp->bucket_lock);
return 0;

cur->next;

long key)

Figure 5.19: Data-Locking Hash Table Search

67

68 CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

Figure 5.20: Data Locking

“dcache”). Each entry in this cache has its own lock, but
the entries corresponding to the root directory and its di-
rect descendants are much more likely to be traversed than
are more obscure entries. This can result in many CPUs
contending for the locks of these popular entries, resulting
in a situation not unlike that shown in Figure 5.21.

In many cases, algorithms can be designed to reduce
the instance of data skew, and in some cases eliminate it
entirely (as appears to be possible with the Linux kernel’s
dcache [MSS04]). Data locking is often used for parti-
tionable data structures such as hash tables, as well as
in situations where multiple entities are each represented
by an instance of a given data structure. The task list in
version 2.6.17 of the Linux kernel is an example of the
latter, each task structure having its own proc_lock.

A key challenge with data locking on dynamically allo-
cated structures is ensuring that the structure remains in
existence while the lock is being acquired. The code in
Figure 5.19 finesses this challenge by placing the locks
in the statically allocated hash buckets, which are never
freed. However, this trick would not work if the hash
table were resizeable, so that the locks were now dynami-
cally allocated. In this case, there would need to be some
means to prevent the hash bucket from being freed during

Figure 5.21: Data Locking and Skew

the time that its lock was being acquired.

Quick Quiz 5.12: What are some ways of prevent-
ing a structure from being freed while its lock is being
acquired? W

5.3.4 Data Ownership

Data ownership partitions a given data structure over the
threads or CPUs, so that each thread/CPU accesses its
subset of the data structure without any synchronization
overhead whatsoever. However, if one thread wishes to
access some other thread’s data, the first thread is unable
to do so directly. Instead, the first thread must commu-
nicate with the second thread, so that the second thread
performs the operation on behalf of the first, or, alterna-
tively, migrates the data to the first thread.

Data ownership might seem arcane, but it is used very
frequently:

1. Any variables accessible by only one CPU or thread
(such as auto variables in C and C++) are owned
by that CPU or process.

2. An instance of a user interface owns the correspond-
ing user’s context. It is very common for applica-
tions interacting with parallel database engines to be
written as if they were entirely sequential programs.
Such applications own the user interface and his cur-

5.3. SYNCHRONIZATION GRANULARITY

rent action. Explicit parallelism is thus confined to
the database engine itself.

3. Parametric simulations are often trivially parallelized
by granting each thread ownership of a particular
region of the parameter space. There are also com-
puting frameworks designed for this type of prob-
lem [UoCO08].

If there is significant sharing, communication between
the threads or CPUs can result in significant complexity
and overhead. Furthermore, if the most-heavily used data
happens to be that owned by a single CPU, that CPU will
be a “hot spot”, sometimes with results resembling that
shown in Figure 5.21. However, in situations where no
sharing is required, data ownership achieves ideal per-
formance, and with code that can be as simple as the
sequential-program case shown in Figure 5.16. Such situ-
ations are often referred to as “embarrassingly parallel”,
and, in the best case, resemble the situation previously
shown in Figure 5.20.

Another important instance of data ownership occurs
when the data is read-only, in which case, all threads can
“own” it via replication.

Data ownership will be presented in more detail in
Chapter 7.

5.3.5 Locking Granularity and Perfor-
mance

This section looks at locking granularity and performance
from a mathematical synchronization-efficiency view-
point. Readers who are uninspired by mathematics might
choose to skip this section.

The approach is to use a crude queueing model for the
efficiency of synchronization mechanism that operate on
a single shared global variable, based on an M/M/1 queue.
M/M/1 queuing models are based on an exponentially
distributed “inter-arrival rate” A and an exponentially
distributed “‘service rate” p. The inter-arrival rate A can
be thought of as the average number of synchronization
operations per second that the system would process if the
synchronization were free, in other words, A is an inverse
measure of the overhead of each non-synchronization
unit of work. For example, if each unit of work was a
transaction, and if each transaction took one millisecond
to process, excluding synchronization overhead, then A
would be 1,000 transactions per second.

The service rate p is defined similarly, but for the av-
erage number of synchronization operations per second

69

that the system would process if the overhead of each
transaction was zero, and ignoring the fact that CPUs
must wait on each other to complete their synchronization
operations, in other words, t can be roughly thought of
as the synchronization overhead in absence of contention.
For example, suppose that each synchronization opera-
tion involves an atomic increment instruction, and that a
computer system is able to do an atomic increment every
25 nanoseconds on each CPU to a private variable.!> The
value of u is therefore about 40,000,000 atomic incre-
ments per second.

Of course, the value of A increases with increasing
numbers of CPUs, as each CPU is capable of processing
transactions independently (again, ignoring synchroniza-
tion):

A =nky (5.1

where n is the number of CPUs and Ay is the
transaction-processing capability of a single CPU. Note
that the expected time for a single CPU to execute a single
transaction is 1/4.

Because the CPUs have to “wait in line” behind each
other to get their chance to increment the single shared
variable, we can use the M/M/1 queueing-model expres-
sion for the expected total waiting time:

1

T=—— 52
= (5.2)
Substituting the above value of A:
T= o (5.3)
B —nio '

Now, the efficiency is just the ratio of the time required
to process a transaction in absence of synchronization
(1/2) to the time required including synchronization

(T+1/20):

1
e= A 54
T+1/2
Substituting the above value for T and simplifying:
£ _n
-1

12 of course, if there are 8 CPUs all incrementing the same shared
variable, then each CPU must wait at least 175 nanoseconds for each of
the other CPUs to do its increment before consuming an additional 25
nanoseconds doing its own increment. In actual fact, the wait will be
longer due to the need to move the variable from one CPU to another.

BN
(e}

&> 1
(&) S5 S0 SIS S BT Sepls e N
c = A ~
& . N
.9 \\ \—
= \ ' |
L \ =-. 1
c ! : : 100
ke ', 1 ; R
-— | ! |
N I
S I 50 I
= 125 =
S 0! .
c,>)~- [N N N B N B
cfoNoYoNolololeleNe)
~ANOFTOONDOO®O
Number of CPUs/Threads

Figure 5.22: Synchronization Efficiency

But the value of 1 /A is just the ratio of the time re-
quired to process the transaction (absent synchronization
overhead) to that of the synchronization overhead itself
(absent contention). If we call this ratio f, we have:

_fon
f=(n-1)

Figure 5.22 plots the synchronization efficiency e as
a function of the number of CPUs/threads n for a few
values of the overhead ratio f. For example, again using
the 25-nanosecond atomic increment, the f = 10 line cor-
responds to each CPU attempting an atomic increment
every 250 nanoseconds, and the f = 100 line corresponds
to each CPU attempting an atomic increment every 2.5
microseconds, which in turn corresponds to several thou-
sand instructions. Given that each trace drops off sharply
with increasing numbers of CPUs or threads, we can con-
clude that synchronization mechanisms based on atomic
manipulation of a single global shared variable will not
scale well if used heavily on current commodity hardware.
This is a mathematical depiction of the forces leading to
the parallel counting algorithms that were discussed in
Chapter 4.

The concept of efficiency is useful even in cases having
little or no formal synchronization. Consider for example
a matrix multiply, in which the columns of one matrix
are multiplied (via “dot product”) by the rows of another,

e =

(5.6)

CHAPTER 5. PARTITIONING AND SYNCHRONIZATION DESIGN

Matrix Multiply Efficiency

1 10 100

Number of CPUs/Threads

Figure 5.23: Matrix Multiply Efficiency

resulting in an entry in a third matrix. Because none of
these operations conflict, it is possible to partition the
columns of the first matrix among a group of threads,
with each thread computing the corresponding columns
of the result matrix. The threads can therefore operate
entirely independently, with no synchronization overhead
whatsoever, as is done in matmul . c. One might there-
fore expect a parallel matrix multiply to have a perfect
efficiency of 1.0.

However, Figure 5.23 tells a different story, especially
for a 64-by-64 matrix multiply, which never gets above
an efficiency of about 0.7, even when running single-
threaded. The 512-by-512 matrix multiply’s efficiency
is measurably less than 1.0 on as few as 10 threads, and
even the 1024-by-1024 matrix multiply deviates notice-
ably from perfection at a few tens of threads. Neverthe-
less, this figure clearly demonstrates the performance and
scalability benefits of batching: If you must incur syn-
chronization overhead, you may as well get your money’s
worth.

Quick Quiz 5.13: How can a single-threaded 64-by-
64 matrix multiple possibly have an efficiency of less
than 1.0? Shouldn’t all of the traces in Figure 5.23 have

efficiency of exactly 1.0 when running on only one thread?
]

Given these inefficiencies, it is worthwhile to look into
more-scalable approaches such as the data locking de-
scribed in Section 5.3.3 or the parallel-fastpath approach

5.4. PARALLEL FASTPATH

discussed in the next section.

Quick Quiz 5.14: How are data-parallel techniques
going to help with matrix multiply? It is already data
parallel!!! l

5.4 Parallel Fastpath

Fine-grained (and therefore usually higher-performance)
designs are typically more complex than are coarser-
grained designs. In many cases, most of the overhead
is incurred by a small fraction of the code [Knu73]. So
why not focus effort on that small fraction?

This is the idea behind the parallel-fastpath design pat-
tern, to aggressively parallelize the common-case code
path without incurring the complexity that would be re-
quired to aggressively parallelize the entire algorithm.
You must understand not only the specific algorithm you
wish to parallelize, but also the workload that the algo-
rithm will be subjected to. Great creativity and design
effort is often required to construct a parallel fastpath.

Parallel fastpath combines different patterns (one for
the fastpath, one elsewhere) and is therefore a template
pattern. The following instances of parallel fastpath occur
often enough to warrant their own patterns, as depicted in
Figure 5.24:

Reader/Writer

> Locking

N y,
> RCU
Parallel N /
Fastpath
Hierarchical

> Lockin