- 
            Beals, Richard, and Roderick Wong. Special functions: a graduate
            text. Vol. 126. Cambridge University Press, 2010.
          
- 
            Pearson, John W., Sheehan Olver, and Mason A. Porter. Numerical
            methods for the computation of the confluent and Gauss hypergeometric
            functions. Numerical Algorithms 74.3 (2017): 821-866.
          
- 
            Luke, Yudell L. Algorithms for Rational Approximations for
            a Confluent Hypergeometric Function II. MISSOURI UNIV KANSAS
            CITY DEPT OF MATHEMATICS, 1976.
          
- 
            Derezinski, Jan. Hypergeometric type functions and their symmetries.
            Annales Henri Poincaré. Vol. 15. No. 8. Springer Basel, 2014.
          
- 
            Keith E. Muller Computing the confluent hypergeometric function,
            M(a, b, x). Numer. Math. 90: 179-196 (2001).
          
- 
            Carlo Morosi, Livio Pizzocchero. On the expansion of the Kummer
            function in terms of incomplete Gamma functions. Arch. Inequal.
            Appl. 2 (2004), 49-72.
          
- 
            Jose Luis Lopez, Nico M. Temme. Asymptotics and numerics of
            polynomials used in Tricomi and Buchholz expansions of Kummer functions.
            Numerische Mathematik, August 2010.
          
- 
            Javier Sesma. The Temme's sum rule for confluent hypergeometric
            functions revisited. Journal of Computational and Applied
            Mathematics 163 (2004) 429-431.
          
- 
            Javier Segura, Nico M. Temme. Numerically satisfactory solutions
            of Kummer recurrence relations. Numer. Math. (2008) 111:109-119.
          
- 
            Alfredo Deano, Javier Segura. Transitory Minimal Solutions
            Of Hypergeometric Recursions And Pseudoconvergence of Associated Continued
            Fractions. Mathematics of Computation, Volume 76, Number 258,
            April 2007.
          
- 
            W. Gautschi. Computational aspects of three-term recurrence
            relations. SIAM Review 9, no.1 (1967) 24-82.
          
- 
            W. Gautschi. Anomalous convergence of a continued fraction
            for ratios of Kummer functions. Math. Comput., 31, no.140
            (1977) 994-999.
          
- 
            British Association for the Advancement of Science: Bessel
            functions, Part II, Mathematical Tables vol. X. Cambridge
            (1952).